Advertisement

Calcolo

, 56:52 | Cite as

Symmetric collocation ERKN methods for general second-order oscillators

  • Xiong YouEmail author
  • Ruqiang Zhang
  • Ting Huang
  • Yonglei Fang
Article
  • 30 Downloads

Abstract

For the numerical solution of the general second-order oscillatory system \(y''+ M y = f(y,y')\), You et al. (Numer Algorithm 66:147–176, 2014) proposed the extended Runge–Kutta–Nyström (ERKN) methods. This paper is devoted to symmetric collocation ERKN methods of Gauss and Lobatto IIIA types by Lagrange interpolation. Linear stability of the new ERKN methods is analyzed. Numerical experiments show the high effectiveness of the new ERKN methods compared to their RKN counterparts.

Keywords

Extended Runge–Kutta–Nyström methods Order condition Symmetry condition Second-order oscillator Collocation 

Mathematics Subject Classification.

Primary 65L05 65L12 

Notes

Acknowledgements

The authors are grateful to the anonymous referees for their invaluable comments and constructive suggestions which help greatly to improve the manuscript. This research was partially supported by National Natural Science Foundation of China (Nos. 11171155, 11871268, 11571302), Natural Science Foundation of Jiangsu Province, China (No. BK20171370), Natural Science Foundation of Shandong Province (No. ZR2018MA024), the Foundation of Scientific Research Project of Shandong Universities (Nos. J17KA190, KJ2018BAI031), and the Youth Foundation for Innovative Science and Technology in Universities of Shandong Province, China (No. 2019KJI001).

References

  1. 1.
    Aubry, A., Chartier, P.: Pseudo-symplectic Runge–Kutta methods. BIT 38, 439–461 (1998)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Avdyushev, V.A.: Special perturbation theory methods in celestial mechanics, I. Principles for the construction and substantiation of the application. Russ. Phys. J. 49, 1344–1353 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Franco, J.M.: Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators. Comput. Phys. Commun. 147, 770–787 (2002)CrossRefGoogle Scholar
  4. 4.
    García-Alonso, F., Reyes, J., Ferrádiz, J., Vigo-Aguiar, J.: Accurate numerical integration of perturbed oscillatory systems in two frequencies. ACM Trans. Math. Softw. 36, 21–34 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    López, D.J., Martín, P.: A numerical method for the integration of perturbed linear problems. Appl. Math. Comput. 96, 65–73 (1998)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Ramos, H., Vigo-Aguiar, J.: Variable-step length Chebyshev-type methods for the integration of second-order I.V.P.’s. J. Comput. Appl. Math. 204, 102–113 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jordan, D.W., Smith, P.: Nonlinear Ordinary Differential Equations. An Introduction for Scientists and Engineers, Fourth edn. Oxford University Press, Oxford (2007)zbMATHGoogle Scholar
  8. 8.
    Weinberger, H.F.: A First Course in Partial Differential Equations with Complex Variables and Transform Methods. Dover Publications Inc, New York (1965)zbMATHGoogle Scholar
  9. 9.
    Purcell, O., Savery, N.J., Grierson, C.G., di Bernardo, M.: A comparative analysis of synthetic genetic oscillators. J. R. Soc. Interface 7, 1503–1524 (2010)CrossRefGoogle Scholar
  10. 10.
    Yang, H., Wu, X., You, X., Fang, Y.: Extended RKN-type methods for numerical integration of perturbed oscillators. Comput. Phys. Commun. 180, 1777–1794 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    You, X., Fang, Y., Zhao, J.: Special extended Nyström tree theory for ERKN methods. J. Comput. Appl. Math. 263, 478–499 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chen, Z., You, X., Shi, W., Liu, Z.: Symmetric and symplectic ERKN methods for oscillatory Hamiltonian systems. Comput. Phys. Commun. 183, 86–98 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Blanes, S.: Explicit symplectic RKN methods for perturbed non-autonomous oscillators: splitting, extended and exponentially fitting methods. Comput. Phys. Commun. 193, 10–18 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wang, B., Yang, H., Meng, F.: Sixth-order symplectic and symmetric explicit ERKN schemes for solving multi-frequency oscillatory nonlinear Hamiltonian equations. Calcolo 54, 117–140 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    You, X., Zhao, J., Yang, H., Fang, Y., Wu, X.: Order conditions for RKN methods solving general second-order oscillatory systems. Numer. Algorithm 66, 147–176 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations, 2nd edn. Wiley, New York (2008)CrossRefGoogle Scholar
  17. 17.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problem. Springer, Berlin (1993)zbMATHGoogle Scholar
  18. 18.
    Wu, X., You, X., Wang, B.: Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer, Berlin (2013)CrossRefGoogle Scholar
  19. 19.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)zbMATHGoogle Scholar
  20. 20.
    Widder, S., Schicho, J., Schuster, P.: Dynamic patterns of gene regulation I: simple two-gene systems. J. Theor. Biol. 246, 395–419 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Polynikis, A., Hogan, S.J., di Bernardo, M.: Comparing different ODE modelling approaches for gene regulatory networks. J. Theor. Biol. 261, 511–530 (2009)MathSciNetCrossRefGoogle Scholar
  22. 22.
    You, X.: Limit-cycle-preserving simulation of gene regulatory oscillators. Discrete Dyn. Nat. Soc. 2012, Article ID 673296, 22 p (2012)Google Scholar

Copyright information

© Istituto di Informatica e Telematica (IIT) 2019

Authors and Affiliations

  1. 1.College of SciencesNanjing Agricultural UniversityNanjingPeople’s Republic of China
  2. 2.College of HorticultureNanjing Agricultural University, Nanjing UniversityNanjingPeople’s Republic of China
  3. 3.Nanjing University of Chinese Medicine Hanlin CollegeTaizhouPeople’s Republic of China
  4. 4.Department of Mathematics and Information ScienceZaozhuang UniversityZaozhuangPeople’s Republic of China

Personalised recommendations