, 56:43 | Cite as

A hybrid extragradient method for a general split equality problem involving resolvents and pseudomonotone bifunctions in Banach spaces

  • M. Raeisi
  • Gholamreza Zamani EskandaniEmail author


In this paper, using a hybrid extragradient method, we introduce a new iterative process for finding a common element of the solution set of the Split Equality Common Equilibrium Problem for a finite family of pseudomonotone bifunctions and the solution set of the Split Equality Common Null Point Problem for a finite family of monotone operators in certain Banach spaces. We establish strong convergence of the proposed algorithm. This paper concludes with certain applications where we utilize our results to study the determination of a solution of the Split Equality Common Variational Inequality Problem and a solution of the Split Equality Common Null Point Problem. A numerical example to support our main theorem will be exhibited. The theorems proved improve and complement a host of important recent results.


Split equality equilibrium problem Pseudomonotone bifunction \(\phi \)-Lipschitz-type continuity Variational inequality 

Mathematics Subject Classification

47H05 47H09 47H10 



  1. 1.
    Alber, Y.I.: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartsatos, A.G. (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Lecture Notes in Pure and Applied Mathematics, vol. 178, pp. 15–50. Dekker, New York (1996)Google Scholar
  2. 2.
    Alsulami, S.M., Hussain, N., Takahashi, W.: Weakly convergent iterative method for the splite commone null point problem in Banach spaces. J. Nonlinear Convex Anal. 11, 2333–2342 (2015)zbMATHGoogle Scholar
  3. 3.
    Anh, P.N.: Strong convergence theorems for nonexpansive mappings and Ky Fan inequalities. J. Optim. Theory Appl. 154, 303–320 (2012)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Antipin, A.S.: Equilibrium programming problems: prox-regularization and prox-methods. In: Gritzmann, P., Horst, R., Sachs, E., Tichatschke, R. (eds.) Recent Advances in Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 452, pp. 1–18. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Antipin, A.S.: Extraproximal approach to calculating equilibriums in pure exchange models. Comput. Math. Math. Phys. 46, 1687–1998 (2006)MathSciNetGoogle Scholar
  6. 6.
    Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 34, 367–426 (1996)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bianchi, M., Schaible, S.: Generalized monotone bifunctions and equilibriume problems. J. Optim. Theory Appl. 90, 31–43 (1996)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Byrne, C.L.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  12. 12.
    Cegielski, A.: General method for solving the split common fixed point problem. J. Optim. Theory. Appl. 165, 385–404 (2015)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)Google Scholar
  14. 14.
    Censor, Y., Cegielski, A.: Projection methods: an annotated bibliography of books and reviews. Optimization 64, 2343–2358 (2015)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21, 2071–2084 (2005)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Censor, Y., Segal, A.: The split common fixed point problem for directed operators. J. Convex Anal. 16, 587–600 (2009)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Chidume, C.E., Romanus, O.M., Nnyaba, U.V.: An iterative algorithm for solving split equality fixed point problems for a class of nonexpansive-type mappings in Banach spaces. Numer. Algorithms. MathSciNetzbMATHGoogle Scholar
  20. 20.
    Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H.H., Burachik, R., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer, New York (2011)zbMATHGoogle Scholar
  21. 21.
    Eskandani, G.Z., Raeisi, M., Rassias, ThM: A hybrid extragradient method for solving pseudomonotone equilibrium problems using Bregman distance. J. Fixed Point Theory Appl. 20, 132 (2018)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Eslamian, M., Eskandani, G.Z., Raeisi, M.: Split common null point and common fixed point problems between Banach spaces and Hilbert spaces. Mediterr. J. Math. 14, 119 (2017)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Gibali, A.: A new split inverse problem and application to least intensity feasible solutions. Pure Appl. Funct. Anal. 2, 243–258 (2017)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Gibali, A., Küfer, K.-H., Süss, P.: Successive linear programing approach for solving the nonlinear split feasibility problem. J. Nonlinear Convex Anal. 15, 345–353 (2014)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Hieu, D.V., Muu, L.D., Anh, P.K.: Parallel hybrid extragradient methods for pseudmonotone equilibrium problems and nonexpansive mappings. Numer. Algorithms 73, 197–217 (2016)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Iusem, A.N., Nasri, M.: Inexact proximal point methods for equilibrium problems in Banach spaces. Numer. Funct. Anal. Optim. 28, 1279–1308 (2007)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Kassay, G., Reich, S., Sabach, S.: Iterative methods for solving systems of variational inequalities in reflexive Banach spaces. SIAM J. Optim. 21, 1319–1344 (2011)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Kohsaka, F., Takahashi, W.: Strong convergence of an iterative sequence for maximal monotone operators in a Banach space. Abstr. Appl. Anal. 3, 239–249 (2004)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekonomika i Matematicheskie Metody 12, 747–756 (1976). (In Russian)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Konnov, I.V.: Application of the proximal point method to nonmonotone equilibrium problems. J. Optimiz. Theory App. 119, 317–333 (2003)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Latif, A., Eslamian, M.: Strong convergence of split equality Ky Fan inequality problem. RACSAM (2017). MathSciNetzbMATHGoogle Scholar
  32. 32.
    Li, Z., Han, D., Zhang, W.: A self-adaptive projection-type method for nonlinear multiple-sets split feasibility problem. Inverse Probl. Sci. Eng. iFirst 21, 1–16 (2012)Google Scholar
  33. 33.
    Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Springer, Berlin (1979)zbMATHGoogle Scholar
  34. 34.
    Maingé, P.E.: A viscosity method with no spectral radius requirements for the split common fixed point problem. Eur. J. Oper. Res. 235, 17–27 (2014)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Maingé, P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-valued Anal. 16, 899–912 (2008)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Mastroeni, G.: On Auxiliary Principle for Equilibrium Problems, vol. 3, pp. 1244–1258. Publicatione del Dipartimento di Mathematica dell, Universita di Pisa, Pisa (2000)Google Scholar
  37. 37.
    Mastroeni, G.: Gap function for equilibrium problems. J. Glob. Optim. 27, 411–426 (2003)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Moudafi, A.: A relaxed alternating CQ-algorithm for convex feasibility problems. Nonlinear Anal. 79, 117–121 (2013)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Moudafi, A.: Proximal point algorithm extended to equilibrum problem. J. Nat. Geometry 15, 91–100 (1999)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Moudafi, A.: Alternating CQ-algorithm for convex feasibility and split fixed-point problems. J. Nonlinear Convex Anal. 15(4), 809–818 (2014)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Moudafi, A., Al-Shemas, E.: Simultaneous iterative methods for split equality problems and application. Trans. Math. Program. Appl. 1, 1–11 (2013)Google Scholar
  42. 42.
    Nadezhkina, N., Takahashi, W.: Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 128, 191–201 (2013)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Pascali, D., Sburlan, S.: Nonlinear Mappings of Monotone Type. Sijthoff & Nordhoff International Publishers, Alphen aan den Rijn (1987)zbMATHGoogle Scholar
  44. 44.
    Penfold, S., Zalas, R., Casiraghi, M., Brooke, M., Censor, Y., Schulte, R.: Sparsity constrained split feasibility for dose-volume constraints in inverse planning of intensity-modulated photon or proton therapy. Phys. Med. Biol. 62, 3599–3618 (2017)Google Scholar
  45. 45.
    Quoc, T.D., Muu, L.D., Hien, N.V.: Extragradient algorithms extended to equilibrium problems. Optimization 57(6), 749–776 (2008)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Raeisi, M., Eskandani, G.Z., Eslamian, M.: A general algorithm for multiple-sets split feasibility problem involving resolvents and Bregman mappings. Optimization 68, 309–327 (2018)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Sabach, S.: Product of finitely many resolvents of maximal monotone mappings in reflexive Banach spaces. SIAM J Optim. 21, 1289–1308 (2011)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Santos, P., Scheimberg, S.: An inexact subgradient algorithm for equilibrium problems. Comput. Appl. Math. 30, 91–107 (2011)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Schöpfer, F., Schuster, T., Louis, A.K.: An iterative regularization method for the solution of the split feasibility problem in Banach spaces. Inverse Probl. 24, 0550088 (2008)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Semenov, V.V.: A strongly convergent splitting method for systems of operator inclusions with monotone operators. J. Autom. Inf. Sci. 46, 45–56 (2014)Google Scholar
  52. 52.
    Semenov, V.V.: Hybrid splitting methods for the system of operator inclusions with monotone operators. Cybern. Syst. Anal. 50, 741–749 (2014)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Strodiot, J.J., Nguyen, T.T.V., Nguyen, V.H.: A new class of hybrid extragradient algorithms for solving quasi-equilibrium problems. J. Glob. Optim. 56, 373–397 (2013)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Takahashi, W.: Nonlinear Functional Analysis. Kindaikagaku (Japanese), Tokyo (1988)Google Scholar
  55. 55.
    Takahashi, W., Zembayashi, K.: Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces. Nonlinear Anal. 70, 45–57 (2009)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Takahashi, W.: The split common null point problem in Banach spaces. Archiv der Mathematik 104, 357–365 (2015)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Takahashi, W.: The split common null point problem and the shrinking projection method in Banach spaces. Optimization 65, 281–287 (2016)MathSciNetzbMATHGoogle Scholar
  58. 58.
    Takahashi, W., Yao, J.C.: Strong convergence theorems by hybrid methods for the split common null point problem in Banach spaces. Fixed Point Theory Appl. 2015, 87 (2015)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Takahashi, W.: The split feasibility problem in Banach spaces. J. Nonlinear Convex Anal. 15, 1349–1355 (2014)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Tiel, J.V.: Convex Analysis: An Introductory Text. Wiley, Hoboken (1984)zbMATHGoogle Scholar
  61. 61.
    Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38(2), 431–446 (2000)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Vuong, P.T., Strodiot, J.J., Nguyen, V.H.: Extragradient methods and linesearch algorithms for solving Ky Fan inequalities and fixed point problems. J. Optim. Theory Appl. 155, 605–627 (2012)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Xu, H.K.: Another control condition in an iterative method for nonexpansive mappings. Bull. Austral. Math. Soc. 65, 109–113 (2002)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Yao, J.C.: Variational inequalities with generalized monotone operators. Math. Oper. Res. 19, 691–705 (1994)MathSciNetzbMATHGoogle Scholar

Copyright information

© Istituto di Informatica e Telematica (IIT) 2019

Authors and Affiliations

  1. 1.Department of Pure Mathematics, Faculty of Mathematical SciencesUniversity of TabrizTabrizIran

Personalised recommendations