Advertisement

Calcolo

, 56:41 | Cite as

On the equivalence between some projected and modulus-based splitting methods for linear complementarity problems

  • Francesco MezzadriEmail author
Article
  • 53 Downloads

Abstract

In this paper, we analyze the relationship between projected and (possibly accelerated) modulus-based matrix splitting methods for linear complementarity problems. In particular, first we show that some well-known projected splitting methods are equivalent, iteration by iteration, to some (accelerated) modulus-based matrix splitting methods with a specific choice of the parameter \({\varOmega }\). We then generalize this result to any \({\varOmega }\) by formulating new classes of projected splitting methods and also provide a formal projection-based formulation for general (accelerated) modulus-based matrix splitting methods. Finally, we introduce and solve several test problems to evaluate also numerically the equivalence between the analyzed methods.

Keywords

Linear complementarity problem Projected splitting methods Modulus-based matrix splitting methods 

Mathematics Subject Classification

65K15 90C33 

Notes

Acknowledgements

The author desires to thank the anonymous referees for their valuable comments and remarks

References

  1. 1.
    Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem, Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (2009).  https://doi.org/10.1137/1.9780898719000
  2. 2.
    Liao, L.-Z.: A neural network for the linear complementarity problem. Math. Comput. Model. 29, 9–18 (1999)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Cryer, C.: The solution of a quadratic programming problem using systematic overrelaxation. SIAM J. Control 9, 385–392 (1971)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17, 917–933 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Németh, S.Z.: Iterative methods for nonlinear complementarity problems on isoton projection cones. J. Math. Anal. Appl. 350, 340–347 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Xia, Z., Li, C.: Modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problems. Appl. Math. Comput. 271, 34–42 (2015)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Zheng, H.: Improved convergence theorems of modulus-based matrix splitting iteration method for nonlinear complementarity problems of \(H\)-matrices. Calcolo 54(4), 1481–1490 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Zheng, H., Vong, S.: The modulus-based nonsmooth Newton’s method for solving a class of nonlinear complementarity problems of \(P\)-matrices. Calcolo 55, 37 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Zhang, Y.: On the convergence of a class on infeasible interior-point methods for the horizontal linear complementarity problem. SIAM J. Optim. 4(1), 208–227 (1994)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mezzadri, F., Galligani, E.: An inexact Newton methods for solving complementarity problems in hydrodynamic lubrication. Calcolo 55, 1 (2018) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mezzadri, F., Galligani, E.: Splitting methods for a class of horizontal linear complementarity problems. J. Optim. Theory Appl. 180(2), 500–517 (2019)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Mezzadri, F., Galligani, E.: Modulus-based matrix splitting methods for horizontal linear complementarity problems. Numer. Algorithm (in press).  https://doi.org/10.1007/s11075-019-00677-y
  13. 13.
    Mangasarian, O.L.: Solutions of symmetric linear complementarity problems by iterative methods. J. Optim. Theory Appl. 22, 465–485 (1977)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Li, Y., Dai, P.: Generalized AOR methods for linear complementarity problem. Appl. Math. Comput. 188, 7–18 (2007)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Bai, Z.-Z., Evans, D.: Matrix multisplitting relaxation methods for linear complementarity problems. Int. J. Comput. Math. 63(3–4), 309–326 (1997)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Leone, R.D., Mangasarian, O.L., Shiau, T.-H.: Multi-sweep asynchronous parallel successive overrelaxation for the nonsymmetric linear complementarity problem. Ann. Oper. Res. 22(1), 43–54 (1990)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jiang, M., Dong, J.: On the convergence of two-stage splitting methods for linear complementarity problems. J. Comput. Appl. Math 181, 58–69 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    van Bokhoven, W.: Piecewise-Linear Modelling and Analysis. Proefschrift, Eindhoven (1981)Google Scholar
  19. 19.
    Murty, K.: Linear Complementarity, Linear and Nonlinear Programming. Heldermann, Berlin (1988)zbMATHGoogle Scholar
  20. 20.
    Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 20, 425–439 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems. Numer. Algorithms 62, 59–77 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Zheng, N., Yin, J.: Accelerated modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Algorithms 64, 245–262 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Li, W.: A general modulus-based matrix splitting method for linear complementarity problems of H-matrices. Appl. Math. Lett. 26, 1159–1164 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Liu, S., Zheng, H., Li, W.: A general accelerated modulus-based matrix splitting iteration method for solving linear complementarity problems. Calcolo 53(2), 189–199 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Hadjidimos, A., Zhang, L.-L.: Comparison of three classes of algorithms for the solution of the linear complementarity problem with an \(H_+\)-matrix. J. Comput. Appl. Math 336, 175–191 (2018)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zheng, H., Li, W., Vong, S.: A relaxation modulus-based matrix splitting iteration method for solving linear complementarity problems. Numer. Algorithms 74(1), 137–152 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Varga, R.: Matrix Iterative Analysis, 2nd edn. Springer, Berlin (2000)CrossRefGoogle Scholar

Copyright information

© Istituto di Informatica e Telematica (IIT) 2019

Authors and Affiliations

  1. 1.Department of Engineering “Enzo Ferrari”University of Modena and Reggio EmiliaModenaItaly

Personalised recommendations