, 56:15 | Cite as

Rescaled Pure Greedy Algorithm for convex optimization

  • Zheming Gao
  • Guergana PetrovaEmail author


We suggest a new greedy strategy for convex optimization in Banach spaces and prove its convergence rates under a suitable behavior of the modulus of uniform smoothness of the objective function. We show that this algorithm is a generalization of the recently discovered Rescaled Pure Greedy Algorithm for approximation in Hilbert spaces.


Greedy algorithms Convex optimization Rates of convergence 

Mathematics Subject Classification

65K05 90C25 41A46 



  1. 1.
    Borwein, J., Guiro, A., Hajek, P., Vanderwerff, J.: Uniformly convex functions on Banach Spaces. Proc. Am. Math. Soc. 137, 1081–1091 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2009)zbMATHGoogle Scholar
  3. 3.
    Dereventsov, A.: Convergence and rate of convergence of approximate greedy-type algorithms. Ph.D. dissertation, University of South Carolina (2017)Google Scholar
  4. 4.
    Dereventsov, A., Temlyakov, V.: A unified way of analyzing some greedy algorithms. arXiv:1801.06198v1
  5. 5.
    DeVore, R., Temlyakov, V.: Some remarks on greedy algorithms. Adv. Comput. Math. 5, 173–187 (1996)MathSciNetCrossRefGoogle Scholar
  6. 6.
    DeVore, R., Temlyakov, V.: Convex optimization on Banach spaces. Found. Comput. Math. 16(2), 369–394 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Nemirovski, A.: Optimization II: Numerical Methods for Nonlinear Continuous Optimization. Lecture Notes. Israel Institute of Technology, Haifa (1999)Google Scholar
  8. 8.
    Nguyen, H., Petrova, G.: Greedy strategies for convex optimization. Calcolo 54(1), 207–224 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Petrova, G.: Rescaled pure greedy algorithm for Hilbert and Banach spaces. Appl. Comput. Harm. Anal. 41, 852–866 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Temlyakov, V.: Greedy expansions in convex optimization. Proc. Steklov Inst. Math. 284(1), 244–262 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Temlyakov, V.: Greedy approximation in convex optimization. Constr. Approx. 41(2), 269–296 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Temlyakov, V.: Greedy Approximation. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  13. 13.
    Zalinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing Co., Inc., River Edge (2002)CrossRefGoogle Scholar
  14. 14.
    Zhang, T.: Sequential greedy approximation for certain convex optimization problems. IEEE Trans. Inf. Theory 49(3), 682–691 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© Istituto di Informatica e Telematica (IIT) 2019

Authors and Affiliations

  1. 1.Department of Operations ResearchNCSURaleighUSA
  2. 2.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations