Advertisement

Calcolo

, 56:13 | Cite as

A preconditioned modulus-based matrix multisplitting block iteration method for the linear complementarity problems with Toeplitz matrix

  • Min-Hua Wu
  • Chen-Liang LiEmail author
Article
  • 24 Downloads

Abstract

A preconditioned modulus-based matrix multisplitting block iteration method is presented for solving the linear complementarity problem with symmetric positive definite Toeplitz matrix. We choose Strang’s preconditioner or T. Chan’s preconditioner as preconditioner in the method. The method has faster convergence rate and less computational work. We also analyze convergence of the method, and show that the new method is effective with some numerical results.

Keywords

Toeplitz matrix Linear complementarity problem Modulus-based matrix multisplitting block iteration method Preconditioner Symmetric positive definite matrix 

Mathematics Subject Classification

65F10 65Y05 65H10 

Notes

References

  1. 1.
    Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17(6), 917–933 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bai, Z.-Z.: On the convergence of the multisplitting methods for the linear complementarity problem. SIAM J. Matrix Anal. Appl. 21(1), 67–78 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bai, Z.-Z.: A class of asynchronous parallel multisplitting blockwise relaxation methods. Parallel Comput. 25, 681–701 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bai, Z.-Z.: Asynchronous parallel matrix multisplitting block relaxation iteration methods. Numer. Math. J. Chin. Univ. (Chin. Ser.) 19(1), 28–39 (1997)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bai, Z.-Z.: Parallel matrix multisplitting block relaxation iteraion methods. Math. Numer. Sin. 17(3), 238–252 (1995)zbMATHGoogle Scholar
  6. 6.
    Bai, Z.-Z., Evans, D.J.: Matrix multisplitting methods with applications to linear complementarity problems: parallel synchronous and chaotic methods. Reseaux syst. repartis Calc. Paralleles 13(1), 125–154 (2001)Google Scholar
  7. 7.
    Bai, Z.-Z., Evans, D.J.: Matrix multisplitting methods with applications to linear complementarity problems: parallel asynchronous methods. Int. J. Comput. Math. 79(2), 205–232 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bai, Z.-Z., Sun, J.-C., Wang, D.-R.: A unified framework for the construction of various matrix multisplitting iterative methods for large sparse system of linear equations. Comput. Math. Appl. 32(12), 51–76 (1996)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 20(3), 425–439 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems. Numer. Algorithms 62(1), 59–77 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Belsky, V.: A multi-grid method for variational inequalities in contact problems. Computing 51(3–4), 293–311 (1993)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chan, R.H., Ng, M.K.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38(3), 427–482 (1996)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Chen, J.-L., Chen, X.-H.: Special Matrices. Tsinhua University Press, Beijing (2001)Google Scholar
  14. 14.
    Dong, J.-L., Jiang, M.-Q.: A modified modulus method for symmetric positive definite linear complementarity problems. Numer. Linear Algebra Appl. 16(2), 129–143 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Evans, D.J., Bai, Z.-Z.: Blockwise matrix multi-splitting multi-parameter block relaxation methods. Int. J. Comput. Math. 64, 103–118 (1997)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Frommer, A., Mayer, G.: Convergence of relaxed parallel multisplitting methods. Linear Algebra Appl. 119(1), 141–152 (1989)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hong, J.-T., Li, C.-L.: Modulus-based matrix splitting iteration methods for a class of implicit complementarity problems. Numer. Linear Algebra Appl. 23, 629–641 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jin, X.-Q.: Developments and Applications of Block Toeplitz Iterative Solvers. Science Press, Henderson (2002)Google Scholar
  19. 19.
    Jin, X.-Q.: Preconditioning Techniques for Toeplitz Systems. Higher Education Press, Beijing (2010)Google Scholar
  20. 20.
    Li, C.-L.: Some new methods for variational inequalities and complementarity problems. PhD thesis, Hunan University, Changsha (2004)Google Scholar
  21. 21.
    O’Leary, D.P., White, R.E.: Multi-splittings of matrices and parallel solution of linear systems. SIAM J. Algebraic Discrete Methods 6(4), 630–640 (2006)CrossRefGoogle Scholar
  22. 22.
    Olkin, J.: Linear and nonlinear deconvolution problems. PhD thesis, Rice University, Houston (1986)Google Scholar
  23. 23.
    Sun, C.-C., Wang, X., Li, Y.: Convergent analysis of linear complementarity problems based on synchronous block multisplitting iteration methods. J. Nanchang Univ. (Nat. Sci.) 37(4), 307–312 (2013)zbMATHGoogle Scholar
  24. 24.
    Strang, G.: A proposal for Toeplitz matrix calculations. Stud. Appl. Math. 74(2), 171–176 (1986)CrossRefGoogle Scholar
  25. 25.
    Tyrtyshnikov, E.E.: Optimal and superoptimal circulant preconditioners. SIAM J. Matrix Anal. Appl. 13(2), 459–473 (1992)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Vollebregt, E.A.H.: A new solver for the elastic normal contact problem using conjugate gradients, deflation, and an FFT-based preconditioner. J. Comput. Phys. 257(PA), 333–351 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zhao, J., Vollebregt, E.A.H., Oosterlee, C.W.: A full multigrid method for linear complementarity problems arising from elastic normal contact problems. Math. Model. Anal. 19(2), 216–240 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhang, L.-L.: On modulus-based matrix splitting iteration methods for linear complementarity problems. Math. Numer. Sin. 34, 373–386 (2012)MathSciNetzbMATHGoogle Scholar

Copyright information

© Istituto di Informatica e Telematica (IIT) 2019

Authors and Affiliations

  1. 1.School of Mathematics and Computing Science, Guangxi Colleges and Universities Key Laboratory of Data Analysis and ComputationGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations