, Volume 54, Issue 3, pp 1009–1025 | Cite as

Discrete p-robust \(\varvec{H}({{\mathrm{div}}})\)-liftings and a posteriori estimates for elliptic problems with \(H^{-1}\) source terms

  • Alexandre Ern
  • Iain SmearsEmail author
  • Martin Vohralík


We establish the existence of liftings into discrete subspaces of \(\varvec{H}({{\mathrm{div}}})\) of piecewise polynomial data on locally refined simplicial partitions of polygonal/polyhedral domains. Our liftings are robust with respect to the polynomial degree. This result has important applications in the a posteriori error analysis of parabolic problems, where it permits the removal of so-called transition conditions that link two consecutive meshes. It can also be used in the a posteriori error analysis of elliptic problems, where it allows the treatment of meshes with arbitrary numbers of hanging nodes between elements. We present a constructive proof based on the a posteriori error analysis of an auxiliary elliptic problem with \(H^{-1}\) source terms, thereby yielding results of independent interest. In particular, for such problems, we obtain guaranteed upper bounds on the error along with polynomial-degree robust local efficiency of the estimators.

Supplementary material


  1. 1.
    Agnelli, J.P., Garau, E.M., Morin, P.: A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces. ESAIM Math. Model. Numer. Anal. 48, 1557–1581 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ainsworth, M.: A framework for obtaining guaranteed error bounds for finite element approximations. J. Comput. Appl. Math. 234, 2618–2632 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ainsworth, M., Guzmán, J., Sayas, F.-J.: Discrete extension operators for mixed finite element spaces on locally refined meshes. Math. Comp. 85, 2639–2650 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Araya, R., Behrens, E., Rodríguez, R.: A posteriori error estimates for elliptic problems with Dirac delta source terms. Numer. Math. 105, 193–216 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Braess, D., Pillwein, V., Schöberl, J.: Equilibrated residual error estimates are \(p\)-robust. Comput. Methods Appl. Mech. Engrg. 198, 1189–1197 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Braess, D., Schöberl, J.: Equilibrated residual error estimator for edge elements. Math. Comp. 77, 651–672 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cohen, A., DeVore, R., Nochetto, R.H.: Convergence rates of AFEM with \(H^{-1}\) data. Found. Comput. Math. 12, 671–718 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Costabel, M., McIntosh, A.: On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265, 297–320 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Demkowicz, L., Gopalakrishnan, J., Schöberl, J.: Polynomial extension operators. Part III. Math. Comp. 81, 1289–1326 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Destuynder, P., Métivet, B.: Explicit error bounds in a conforming finite element method. Math. Comp. 68, 1379–1396 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dolejší, V., Ern, A., Vohralík, M.: hp-adaptation driven by polynomial-degree-robust a posteriori error estimates for elliptic problems. SIAM J. Sci. Comput. 38(5), A3220–A3246 (2016)Google Scholar
  12. 12.
    Ern, A., Vohralík, M.: Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53, 1058–1081 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ern, A., Vohralík, M.: Stable broken \(H^1\) and H(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions, submitted for publication (2016), (preprint)
  14. 14.
    Ern, A., Smears, I., Vohralík, M.: Guaranteed, locally space-time efficient, and polynomial-degree robust a posteriori error estimates for high-order discretizations of parabolic problems, submitted for publication (2016), (preprint)
  15. 15.
    Gaspoz, F., Morin, P., Veeser, A.: A posteriori error estimates with point sources in fractional Sobolev spaces. Numer. Methods Par. Differ. Equ. (2016). doi: 10.1002/num.22065
  16. 16.
    Kreuzer, C., Veeser, A.: Private communicationGoogle Scholar
  17. 17.
    Verfürth, R.: A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40, 195–212 (2003)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2017

Authors and Affiliations

  1. 1.Université Paris-Est, CERMICS (ENPC)Marne-la-Vallée 2France
  2. 2.Inria ParisParisFrance

Personalised recommendations