Advertisement

Calcolo

, Volume 53, Issue 4, pp 659–690 | Cite as

Spectral discretization of an unsteady flow through a porous solid

  • Christine Bernardi
  • Sarra Maarouf
  • Driss Yakoubi
Article
  • 153 Downloads

Abstract

We consider the non stationary flow of a viscous incompressible fluid in a rigid homogeneous porous medium provided with mixed boundary conditions. Since the boundary pressure can present high variations, the permeability of the medium also depends on the pressure, so that the problem is nonlinear. We propose a discretization of this equation that combines Euler’s implicit scheme in time and spectral methods in space. We prove optimal a priori error estimates and present some numerical experiments which confirm the interest of the discretization.

Keywords

Darcy’s equations Time discretization Spectral method 

Mathematics Subject Classification

35B45 65M70 65N35 76S05 

References

  1. 1.
    Achdou, Y., Bernardi, C., Coquel, F.: A priori and a posteriori analysis of finite volume discretizations of Darcy’s equations. Numer. Math. 96(1), 17–42 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Adams, R.A., Fournier, J.: Sobolev Spaces. Academic Press, New York (2003)zbMATHGoogle Scholar
  3. 3.
    Ahusborde, E., Azaïez, M., Ben Belgacem, F., Bernardi, C.: Automatic simplification of Darcy’s equations with pressure dependent permeability. ESAIM Math. Model. Numer. Anal. 47(6), 1797–1820 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Azaïez, M., Ben Belgacem, F., Bernardi, C., Chorfi, N.: Spectral discretization of Darcy’s equations with pressure dependent porosity. Appl. Math. Comput. 217, 1838–1856 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bernard, J.-M.: Density results in Sobolev spaces whose elements vanish on a part of the boundary. Chin. Ann. Math. Ser. B 32(6), 823–846 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bernardi, C., Girault, V., Rajagopal, K.: Discretization of an unsteady flow through porous solid modeled by Darcy’s equations. Math. Models Methods Appl. Sci. 18(12), 2087–2123 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bernardi, C., Maday, Y.: Spectral methods. In: Ciarlet, P.G., Lions J.-L. (eds.) Handbook of Numerical Analysis, vol. V, pp. 209–485. North-Holland, Amsterdam (1997)Google Scholar
  8. 8.
    Bernardi, C., Maday, Y., Rapetti, F.: Discrétisations variationnelles de problèmes aux limites elliptiques, Volume 45 of Mathématiques & Applications. Springer, Paris (2004)Google Scholar
  9. 9.
    Brezis, H.: Analyse Fonctionnelle: Théorie et Applications. Collection “Mathématiques Appliquées pour la Maîtrise”, Masson (1983)Google Scholar
  10. 10.
    Brezis, H., Mironescu, P.: Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces. J. Evol. Equ. 1(4), 387–404 (2001). (Dedicated to the memory of Tosio Kato) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Brezzi, F., Rappaz, J., Raviart, P.-A.: Finite-dimensional approximation of nonlinear problems. I. Branches of nonsingular solutions. Numer. Math. 36(1), 1–25 (1980/1981)Google Scholar
  12. 12.
    Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms, volume 5 of Springer Series in Computational Mathematics. Springer, Berlin (1986)Google Scholar
  13. 13.
    Lions, J.-L., Magenes, E.: Problèmes aux limites non homogènes et applications, vol. 1. Dunod, Paris (1968)zbMATHGoogle Scholar
  14. 14.
    Maday, Y., Rønquist, E.M.: Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries. Comput. Methods Appl. Mech. Eng. 80, 91–115 (1990)CrossRefzbMATHGoogle Scholar
  15. 15.
    Quarteroni, A.: Some results of Bernstein and Jackson type for polynomial approximation in \(L^p\)-spaces. Jpn. J. Appl. Math. 1(1), 173–181 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rajagopal, K.R.: On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Math. Models Methods Appl. Sci. 17(2), 215–252 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)CrossRefzbMATHGoogle Scholar
  18. 18.
    Yakoubi, D.: Analyse et mise en œuvre de nouveaux algorithmes en méthodes spectrales. Ph.D. thesis, Université Pierre et Marie Curie, Paris (2007)Google Scholar

Copyright information

© Springer-Verlag Italia 2015

Authors and Affiliations

  • Christine Bernardi
    • 1
  • Sarra Maarouf
    • 1
  • Driss Yakoubi
    • 2
  1. 1.Laboratoire Jacques-Louis LionsC.N.R.S. & Université Pierre et Marie CurieParis Cedex 05France
  2. 2.GIREF, Département de Mathématiques et de Statistique, Pavillon VachonUniversité de LavalQuébecCanada

Personalised recommendations