Advertisement

Calcolo

, Volume 53, Issue 2, pp 189–199 | Cite as

A general accelerated modulus-based matrix splitting iteration method for solving linear complementarity problems

  • Shumi Liu
  • Hua ZhengEmail author
  • Wen Li
Article

Abstract

In this paper, a general accelerated modulus-based matrix splitting iteration method is established, which covers the known general modulus-based matrix splitting iteration methods and the accelerated modulus-based matrix splitting iteration methods. The convergence analysis is given when the system matrix is an \(H_+\)-matrix. Numerical examples show that the proposed methods are efficient and accelerate the convergence performance with less iteration steps and CPU times.

Keywords

Linear complementarity problem Modulus-based method   Convergence 

Mathematics Subject Classification

65K15 

Notes

Acknowledgments

The authors would like to thank the referees for their helpful comments. This work is supported in part by National Natural Science Foundations of China (No. 11271144), Guangdong Provincial Natural Science Foundations (No. s2012010009985) and Project of Department of Education of Guangdong Province (No. 2013KJCX0053).

References

  1. 1.
    Ahn, B.H.: Iterative methods for linear complementarity problems with upper-bounds on primary variables. Math. Program. 26, 295–315 (1983)CrossRefzbMATHGoogle Scholar
  2. 2.
    Berman, A., Plemmons, R.J.: Nonnegative Matrix in the Mathematical Sciences. SIAM Publisher, Philadelphia (1994)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17, 917–933 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bai, Z.-Z.: On the convergence of the multisplitting methods for the linear complementarity problem. SIAM J. Matrix Anal. Appl. 21, 67–78 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 20, 425–439 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems. Numer. Algorithms 62, 59–77 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic, San Diego (1992)zbMATHGoogle Scholar
  8. 8.
    Dong, J.-L., Jiang, M.-Q.: A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl. 16, 129–143 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Frommer, A., Mayer, G.: Convergence of relaxed parallel multisplitting methods. Linear Algebra Appl. 119, 141–152 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hadjidimos, A., Lapidakis, M., Tzoumas, M.: On iterative solution for linear complementarity problem with an H-matrix. SIAM J. Matrix Anal. Appl. 33, 97–110 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hadjidimos, A., Tzoumas, M.: Nonstationary extrapolated modulus algorithms for the solution of the linear complementarity problem. Linear Algebra Appl. 431, 197–210 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hu, J.-G.: Estimates of \(\Vert {B^{-1}C} {B^{-1}C}\Vert _\infty \) and their applications. Math. Numer. Sinica 4, 272–282 (1982)MathSciNetGoogle Scholar
  13. 13.
    Li, W.: A general modulus-based matrix splitting method for linear complementarity problems of H- matrices. Appl. Math. Lett. 26, 1159–1164 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Murty, K.G.: Linear Complementarity, Linear and Nonlinear Programming. Heldermann Verlag, Berlin (1988)zbMATHGoogle Scholar
  15. 15.
    van Bokhoven, W.M.G.: Piecewise-Linear Modelling and Analysis. Proefschrift, Eindhoven (1981)Google Scholar
  16. 16.
    Zhang, L.-L.: Two-step modulus based matrix splitting iteration for linear complementarity problems. Numer. Algorithms 57, 83–99 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zheng, N., Yin, J.-F.: accelerated modulus-based matrix splitting iteration methods for linear complementarity problem. Numer. Algorithms 64, 245–262 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2015

Authors and Affiliations

  1. 1.School of Mathematical SciencesSouth China Normal UniversityGuangzhouPeople’s Republic of China
  2. 2.School of Mathematics and StatisticsShaoguan UniversityShaoguanPeople’s Republic of China

Personalised recommendations