Calcolo

, Volume 51, Issue 1, pp 175–192 | Cite as

Fully discrete local discontinuous Galerkin method for solving the fractional telegraph equation

Article

Abstract

This paper aims to develop a fully discrete local discontinuous Galerkin finite element method for numerical simulation of the time-fractional telegraph equation, where the fractional derivative is in the sense of Caputo. The method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space. The stability and convergence of this discontinuous approach are discussed and theoretically proven. Finally numerical examples are performed to illustrate the effectiveness and the accuracy of the method.

Keywords

Fractional telegraph equation Local discontinuous Galerkin method Stability Error estimates 

Mathematics Subject Classification

35Q99 65M60 

References

  1. 1.
    Alomari, A.K.: A new analytic solution for fractional chaotic dynamical systems using the differential transform method. Comput. Math. Appl. 61, 2528–2534 (2011)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Biazar, J., Ebrahimi, H., Ayati, Z.: An approximation to the solution of telegraph equation by variational iteration method. Numer. Methods Partial Differ. Equ. 25, 797–801 (2009)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Cockburn, B., Kanschat, G., Perugia, I., Schotzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Du, R., Cao, W.R., Sun, Z.Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34, 2998–3007 (2010)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Ford, Neville J., Connolly, Joseph A.: Comparison of numerical methods for fractional differential equations. Commun. Pure Appl. Anal. 5, 289–307 (2006)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Liu, F., Anh, V., Turner, I., Zhuang, P.: Time fractional advection dispersion equation. J. Comput. Appl. Math. 13, 233–245 (2003)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Li, C., Zhao, Z., Chen, Y.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Metzler, R., Gl\(\ddot{o}\)ckle, W.G., Nonnenmacher, T.F.: Fractional model equation for anomalous diffusion. Phys. A 211, 13–24 (1994)Google Scholar
  11. 11.
    Mitrovic, D., Ivec, I.: A generalization of \(H\)-measures and application on purely fractional scalar conservation laws. Commun. Pure Appl. Anal. 10, 1617–1627 (2011)Google Scholar
  12. 12.
    Momani, S.: Analytic and approximate solutions of the space- and time-fractional telegraph equations. Appl. Math. Comput. 170, 1126–1134 (2005)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Momani, S., Yildirim, A.: Analytical approximate solutions of the fractional convection-diffusion equation with nonlinear source term by He’s homotopy perturbation method. Int. J. Comput. Math. 87, 1057–1065 (2010)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Murio, D.: Implicite finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56, 1138–1145 (2008)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Podlubny, I.: Fractional Differential Equations. Academic Press, London (1999)MATHGoogle Scholar
  16. 16.
    Shao, L., Feng, X., He, Y.: The local discontinuous Galerkin finite element method for Burger’s equation. Math. Comput. Model. 54, 2943–2954 (2011)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205, 72–97 (2005)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Xu, Y., Shu, C.-W.: Local discontinuous Galerkin method for the Camassa–Holm equation. SIAM J. Numer. Anal. 46, 1998–2021 (2008)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Yildirim, A.: An algorithm for solving the fractional nonlinear Schröinger equation by means of the homotopy perturbation method. Int. J. Nonlinear Sci. Numer. Simul. 10, 445–450 (2009)Google Scholar
  20. 20.
    Yildirim, A.: He’s homtopy perturbation method for solving the space and time fractional telegraph equations. Int. J. Comput. Math. 87, 2998–3006 (2010)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Yildirim, A.: Analytical approach to fractional partial differential equations in fluid mechanics by means of the homotopy perturbation method, Internat. J. Numer. Methods Heat Fluid Flow 20, 186–200 (2010)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  • Leilei Wei
    • 1
  • Huiya Dai
    • 1
  • Dingling Zhang
    • 2
  • Zhiyong Si
    • 3
  1. 1.College of ScienceHenan University of TechnologyZhengzhouPeople’s Republic of China
  2. 2.School of EngineeringSun Yat-sen UniversityGuangzhouPeople’s Republic of China
  3. 3.School of Mathematics and Information ScienceHenan Polytechnic UniversityJiaozuoPeople’s Republic of China

Personalised recommendations