Advertisement

Calcolo

, Volume 51, Issue 1, pp 57–96 | Cite as

Uniform \(l^{1}\) behavior in the Crank–Nicolson methods for a linear Volterra equation with convex kernel

Article

Abstract

We study the time discretization of the Cauchy problem
$$\begin{aligned} u_{t}+\int _{0}^{t}\,\beta (t-s)\,L\,u\,(s)\;ds = 0,\quad t>0, \quad u(0)=u_{0}, \end{aligned}$$
where \(L\) is a self-adjoint densely defined linear operator on a Hilbert space H with a complete eigen system \(\{\lambda _{m},\; \varphi _{m}\}_{m=1}^{\infty }\), and the subscript denotes differentiation with respect to \(t\). The real valued kernel \(\beta \in \,C(0,\,\infty )\bigcap \,L^{1}(0,\,1)\) is assumed to be nonnegative, nonincreasing and convex, and \(-\beta ^{\prime }\) is convex. The equation is discretized in time by Crank–Nicolson method based on the trapezoidal rule: while the time derivative is approximated by the trapezoidal rule in a two-step way, a convolution quadrature rule, constructed again from the trapezoidal rule, is used to approximate the integral term. The results and methods extend and simulate numerically those introduced by Carr and Hannsgen (SIAM J Math Anal 10:961–984, 1979) and (SIAM J Math Anal 13:459–483, 1982) for integrability with respect to continuous solutions. The uniform error estimates of the discretization in time are derived in the \( l^{\infty }_{t}(0,\,\infty ;H) \) norm. Some simple numerical examples illustrate our theoretical error bounds.

Keywords

Volterra equation Crank–Nicolson method \(l^{1}\) stability  Uniform convergence 

Mathematics Subject Classification (2000)

45K05 65J08 65D32 

References

  1. 1.
    Carr, R.W., Hannsgen, K.B.: A nonhomogeneous integro-differential equation in Hilbert space. SIAM J. Math. Anal. 10, 961–984 (1979)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Carr, R.W., Hannsgen, K.B.: Resolvent formulas for a Volterra equation in Hilbert space. SIAM J. Math. Anal. 13, 459–483 (1982)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Renardy, M., Hrusa, W.J., Nohel, J.A.: Mathematical problems in viscoelasticity. Longman, London (1987)MATHGoogle Scholar
  4. 4.
    Prüss, J.: Evolutionary integral equations and applications. Monographs in mathematics, vol. 87. Birkh äuser, Berlin (1993)CrossRefGoogle Scholar
  5. 5.
    Da, Xu: Uniform \(l^{1}\) behavior for time discretization of a Volterra equation with completely monotonic kernel-I: stability. IMA J. Numer. Anal. 22, 133–151 (2002)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Xu, D.: Uniform \(l^{1}\) behavior for time discretization of a Volterra equation with completely monotonic kernel-II: convergence. SIMA J. Numer. Anal. 46, 231–259 (2008)CrossRefMATHGoogle Scholar
  7. 7.
    Da, Xu: Uniform \(l^{1}\) behavior in a second-order difference-type method for a linear Volterra equation with completely monotonic kernel-I: stability. IMA J. Numer. Anal. 31, 1154–1180 (2011)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Harris, C.H.: B. and Noren R. D., Uniform \(l^{1}\) behavior of a time discretization method for a Volterra integro-differential equation with convex kernel; stability. SIAM J. Numer. Anal. 49, 1553–1571 (2011)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Lubich, C.: Convolution quadrature and discretized operational calculus I. Numer. Math. 52, 129–145 (1988). (MR 89g:65018)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Lubich, C.: On convolution quadrature and Hille–Phillips operational calculus. Appl. Numer. Math. 9, 187–199 (1992)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    McLean, W., Thomée, V.: Numerical solution of an evolution equation with a positive type memory term. J. Aust. Math. Soc. B 35, 23–70 (1993)CrossRefMATHGoogle Scholar
  12. 12.
    McLean, W., Thomée, V., Wahlbin, L.B.: Discretization with variable time steps of an evolution equation with a positive-type memory term. J. Comput. Appl. Math. 69, 49–69 (1996)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Cuesta, E., Palencia, C.: A fractional trapezoidal rule for integro-differential equations of fractional order in Banach spaces. Appl. Numer. Math. 45, 139–159 (2003)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Hannsgen, K.B.: Indirect Abelian theorems and a linear Volterra equation. Trans. Am. Math. Soc. 142, 539–555 (1969)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Shea, D.F., Wainger, S.: Variants of the \(Wiener-L\acute{e}vy\) theorem, with applications to stability problems for some Volterra integral equations. Am. J. Math. 97, 312–343 (1975)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Duren, P.L.: The theory of \(H^{p}\) spaces. Academic Press, New York (1970)Google Scholar
  17. 17.
    Hannsgen, K.B.: Uniform \(L^{1}\) behavior for an integro-differential equation with parameter. SIAM J. Math. Anal. 8, 626–639 (1977)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Grenander, U., Szegö, G.: Toeplitz form and their applications. University of California Press, Berkeley (1958)Google Scholar
  19. 19.
    López-Marcos, J.C.: A difference scheme for a nonlinear partial integrodifferential equation. SIAM J. Numer. Anal. 27, 20–31 (1990)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Nohel, J.A., Shea, D.F.: Frequency domain methods for Volterra equations. Adv. Math. 22, 278–304 (1976)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Carr R.W.: Uniform \(L^{p}\) estimates for a linear integro-differential equation with a parameter. Ph. D. thesis, University of Wisconsin-Madison, Madison, WI (1977)Google Scholar
  22. 22.
    Widder, D.V.: The Laplace transform. Princeton University press, Princeton (1946)Google Scholar
  23. 23.
    Rudin, W.: Real and complex analysis. McGraw-Hill, Boston (1987)MATHGoogle Scholar
  24. 24.
    Chen, C.M., Liu, F.W., Turner, I., Anh, V.: Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation. Numer. Algor. 54, 1–21 (2010)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  1. 1.Department of MathematicsHunan Normal UniversityChangshaPeople’s Republic of China

Personalised recommendations