Calcolo

, Volume 49, Issue 3, pp 193–219 | Cite as

Computation of the signed distance function to a discrete contour on adapted triangulation

Article

Abstract

In this paper, we propose a numerical method for computing the signed distance function to a discrete domain, on an arbitrary triangular background mesh. It mainly relies on the use of some theoretical properties of the unsteady Eikonal equation. Then we present a way of adapting the mesh on which computations are held to enhance the accuracy for both the approximation of the signed distance function and the approximation of the initial discrete contour by the induced piecewise affine reconstruction, which is crucial when using this signed distance function in a context of level set methods. Several examples are presented to assess our analysis, in two or three dimensions.

Keywords

Signed distance function Eikonal equation Level set method Anisotropic mesh adaptation 1-finite elements interpolation 

Mathematics Subject Classification (2000)

65M25 65M50 35F20 

References

  1. 1.
    Alauzet, F., Frey, P.: Anisotropic mesh adaptation for CFD computations. Comput. Methods Appl. Mech. Eng. 194, 5068–5082 (2005) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Alauzet, F., Frey, P.: Estimateur d’ erreur géometrique et métriques anisotropes pour l’ adaptation de maillage. Partie I: aspects théoriques. INRIA, Technical Report, p. 4759 (2003) Google Scholar
  3. 3.
    Anglada, M.V., Garcia, N.P., Crosa, P.B.: Directional adaptive surface triangulation. Comput. Aided Geom. Des. 16, 107–126 (1999) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. Series of Advances in Numerical Mathematics. B.G. Teubner, Stuttgart, Leipzig (1999) Google Scholar
  5. 5.
    Aujol, J.F., Auber, G.: Signed distance functions and viscosity solutions of discontinuous Hamilton-Jacobi equations. INRIA, Technical Report, p. 4507 (2002) Google Scholar
  6. 6.
    Berger, M., Gostiaux, B.: Differential Geometry: Manifolds, Curves and Surfaces. Graduate Texts in Mathematics. Springer, Berlin (1987) MATHGoogle Scholar
  7. 7.
    Bui, T.T.C., Frey, P., Maury, B.: A coupling strategy for solving two-fluid flows. Int. J. Numer. Methods Fluids (2010). doi: 10.1002/fld.2730 Google Scholar
  8. 8.
    Cheng, L.-T., Tsai, Y.-T.: Redistancing by flow of time dependent eikonal equation. J. Comput. Phys. 227, 4002–4017 (2008) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Chopp, D.: Computing minimal surfaces via level-set curvature flow. J. Comput. Phys. 106, 77–91 (1993) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978) MATHGoogle Scholar
  11. 11.
    Claisse, A., Frey, P.: Level set driven smooth curve approximation from unorganized or noisy point set. In: Proceedings ESAIM (2008) Google Scholar
  12. 12.
    Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    D’Azevedo, E.F., Simpson, R.B.: On optimal triangular meshes for minimizing the gradient error. Numer. Math. 59, 321–348 (1991) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Delfour, M.C., Zolesio, J.-P.: Shapes and Geometries. SIAM, Philadelphia (2001) MATHGoogle Scholar
  15. 15.
    Ducrot, V., Frey, P.: Contrôle de l’approximation géometrique d une interface par une métrique anisotrope. C. R. Acad. Sci., Ser. 1 Math. 345, 537–542 (2007) MathSciNetMATHGoogle Scholar
  16. 16.
    Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1997) MATHGoogle Scholar
  17. 17.
    Frey, P.J., George, P.L.: Mesh Generation: Application to Finite Elements, 2nd edn. Wiley, New York (2008) MATHGoogle Scholar
  18. 18.
    Dobrzynski, C., Frey, P.: Anisotropic Delaunay mesh adaptation for unsteady simulations. In: Proc. of the 17th IMR, pp. 177–194 (2008) Google Scholar
  19. 19.
    Fuhrmann, A., Sobottka, G., Gross, C.: Abstract distance fields for rapid collision detection in physically based modeling. In: Proceedings of International Conference Graphicon (2003) Google Scholar
  20. 20.
    Gomes, A.J.P., Voiculescu, I., Jorge, J., Wyvill, B., Gallsbraith, C.: Implicit Curves and Surfaces: Mathematics, Data Structures and Algorithms. Springer, Berlin (2009) MATHCrossRefGoogle Scholar
  21. 21.
    Guigue, P., Devillers, O.: Fast and robust triangle-triangle overlap test using orientation predicates. J. Graph. GPU Game Tools 8, 25–42 (2003) Google Scholar
  22. 22.
    Vallet, M.G., Hecht, F., Mantel, B.: Anisotropic control of mesh generation based upon a Voronoi type method. In: Numerical Grid Generation in Computational Fluid Dynamics and Related Fields (1991) Google Scholar
  23. 23.
    Huang, W.: Metric tensors for anisotropic mesh generation. J. Comput. Phys. 204, 633–665 (2005) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Ishii, H.: Existence and uniqueness of solutions of Hamilton-Jacobi equations. Funkc. Ekvacioj 29, 167–188 (1986) MATHGoogle Scholar
  25. 25.
    Jones, M.W.: 3D distance from a point to a triangle. Department of Computer Sciences, University of Wales Swansea, technical report (1995) Google Scholar
  26. 26.
    Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. USA 95, 8431–8435 (1998) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Mantegazza, C., Mennucci, A.C.: Hamilton-Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Optim. 47, 1–25 (2003) MathSciNetCrossRefGoogle Scholar
  28. 28.
    Marchandise, E., Remacle, J.-F., Chevaugeon, N.: A quadrature free discontinuous Galerkin method for the level set equation. J. Comput. Phys. 212, 338–357 (2005) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Mut, F., Buscaglia, G.C., Dari, E.A.: A new mass-conserving algorithm for level-set redistancing on unstructured meshes. Mec. Comput. 23, 1659–1678 (2004) Google Scholar
  30. 30.
    Page, D.L., Sun, Y., Koschan, A.F., Paik, J., Abidi, M.A.: Normal vector voting: crease detection and curvature estimation on large, noisy meshes. Graph. Models 64, 199–229 (2004) CrossRefGoogle Scholar
  31. 31.
    Qian, J., Zhang, Y.T., Zhao, H.: Fast sweeping methods for Eikonal equations on triangular meshes. SIAM J. Numer. Anal. 45, 83–107 (2007) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Osher, S.J., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin (2002) Google Scholar
  33. 33.
    Osher, S.J., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Memoli, F., Sapiro, G.: Fast computation of weighted distance functions and geodesics on implicit hyper-surfaces. J. Comput. Phys. 173, 730–764 (2001) MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Sethian, J.A.: Fast marching methods. SIAM Rev. 41, 199–235 (1999) MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Sethian, J.A.: A fast marching method for monotonically advancing fronts. Proc. Natl. Acad. Sci. USA 93, 1591–1595 (1996) MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge (1999) MATHGoogle Scholar
  38. 38.
    Osher, S.J., Smereka, P., Sussman, M.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146–159 (1994) MATHCrossRefGoogle Scholar
  39. 39.
    Strain, J.: Fast tree-based redistancing for level set computations. J. Comput. Phys. 152, 664–686 (1999) MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Sussman, M., Fatemi, E.: An efficient, interface-preserving level set redistancing algorithm and its applications to interfacial incompressible fluid flow. SIAM J. Sci. Comput. 20, 1165–1191 (1999) MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Sussman, M., Fatemi, E., Smereka, P., Osher, S.: An improved level-set method for incompressible two-phase flows. Comput. Fluids 27, 663–680 (1997) CrossRefGoogle Scholar
  42. 42.
    Zhao, H.: A fast sweeping method for eikonal equations. Math. Comput. 74, 603–627 (2005) MATHGoogle Scholar
  43. 43.
    Zhao, H., Osher, S.J., Fedkiw, R.: Fast surface reconstruction using the level set method. In: Proceedings of IEEE Workshop on Variational and Level Set Methods in Computer Vision (2001) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Centre de Mathématiques Appliquées (UMR 7641)Ecole PolytechniquePalaiseauFrance
  2. 2.Renault DREAM-DTAAGuyancourtFrance
  3. 3.Laboratoire J.-L. LionsUPMC Univ Paris 06, UMR 7598ParisFrance

Personalised recommendations