, Volume 49, Issue 1, pp 63–71 | Cite as

W1,q stability of the Fortin operator for the MAC scheme

  • T. Gallouët
  • R. HerbinEmail author
  • J.-C. Latché


We prove in this paper the continuity of the natural projection operator from \(W^{1,q}_{0}(\varOmega )^{d}\), q∈[1,+∞), d=2 or d=3, to the MAC discrete space of piecewise constant functions over the dual cells, endowed with the finite volume \(W_{0}^{1,q}\)-discrete norm. Since this projection operator is also a Fortin operator (that is an operator which “preserves” the divergence), this result may be applied to control the pressure in mixed problems where the test function for the velocity must be more regular than \(H^{1}_{0}(\varOmega )^{d}\).


MAC scheme Projection stability Fortin operator 

Mathematics Subject Classification (2000)

65M12 76D07 76M12 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15. Springer, Berlin (1991) zbMATHCrossRefGoogle Scholar
  2. 2.
    Eymard, R., Gallouët, T., Herbin, R., Latché, J.-C.: Convergence of the MAC scheme for the compressible Stokes equations. SIAM J. Numer. Anal. 48, 2218–2246 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Eymard, R., Herbin, R., Latché, J.-C., Piar, B.: On the stability of colocated clustered finite volume simplicial discretizations for the 2D Stokes problem. Calcolo 44, 219–234 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Falk, R.S.: A Fortin operator for two-dimensional Taylor-Hood elements. Modél. Math. Anal. Numér. 42, 411–424 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Girault, V., Scott, L.R.: A quasi-local interpolation operator preserving the discrete divergence. Calcolo 40, 1–19 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Harlow, F.H., Welsh, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965) zbMATHCrossRefGoogle Scholar
  7. 7.
    Nicolaides, R.A.: Analysis and convergence of the MAC scheme I. The linear problem. SIAM J. Numer. Anal. 29, 1579–1591 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Nicolaides, R.A., Wu, X.: Analysis and convergence of the MAC scheme II. Navier-Stokes equations. Math. Comput. 65, 29–44 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Nicolaides, R.A.: The covolume approach to computing incompressible flows. In: Incompressible Computational Fluid Dynamics—Trends and Advances. pp. 295–334. Cambridge University Press, Cambridge (1993) CrossRefGoogle Scholar
  10. 10.
    Novotný, A., Straškraba, I.: Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and Its Applications, vol. 27. Oxford University Press, London (2004) zbMATHGoogle Scholar
  11. 11.
    Wilcox, D.C.: Turbulence Modelling for CFD. DCW Industries, La Cañada (1993) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Université de ProvenceMarseille cedexFrance
  2. 2.Institut de Radioprotection et Sûreté Nucléaire (IRSN)St Paul-lez-Durance cedexFrance

Personalised recommendations