Calcolo

, Volume 48, Issue 4, pp 293–305 | Cite as

Adaptive finite elements for a certain class of variational inequalities of second kind

Article

Abstract

In this note, we extend our studies on finite element Galerkin schemes for elliptic variational inequalities of first to the one of second kind. Especially we perform the corresponding a posteriori error analysis for a simple friction problem and a model flow of a Bingham fluid.

Collecting the experiences from these examples, we propose a framework for deriving a posteriori error estimates for a certain class of problems given in an abstract setting describing elliptic variational problems of second kind.

Numerical examples and tests confirm our theoretical results.

Keywords

Bingham fluid Friction problem A posteriori error estimate Variational inequality Finite element method Adaptivity 

Mathematics Subject Classification

65N30 65N15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Eng. 142, 1–88 (1997) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Babuška, I., Miller, A.D.: A feedback finite element method with a posteriori error estimation, part 1. Comput. Methods Appl. Mech. Eng. 61, 1–40 (1987) MATHCrossRefGoogle Scholar
  3. 3.
    Bank, R.E., Weiser, A.: Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 44, 283–301 (1985) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Blum, H., Suttmeier, F.T.: An adaptive finite element discretisation for a simplified Signorini problem. Calcolo 37(2), 65–77 (2000) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Blum, H., Suttmeier, F.T.: Weighted error estimates for finite element solutions of variational inequalities. Computing 65, 119–134 (2000) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Carstensen, C., Scherf, O., Wriggers, P.: Adaptive finite elements for elastic bodies in contact. SIAM J. Sci. Comput. 20(5), 1605–1626 (1999) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    DEAL: Differential equations analysis library. http://www.math.uni-siegen.de/suttmeier/deal/deal.html (1995)
  8. 8.
    Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976) MATHCrossRefGoogle Scholar
  9. 9.
    Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer Series in Comp. Physics. Springer, Berlin (1983) Google Scholar
  10. 10.
    Glowinski, R., Lions, J.L., Trémolières, R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981) MATHGoogle Scholar
  11. 11.
    Hansbo, P., Johnson, C.: Adaptive finite element methods for elastostatic contact problems. In: Bern, M., Flaherty, J.E., Luskin, M. (eds.) Grid Generation and Adaptive Algorithms. Springer, Berlin (1999) Google Scholar
  12. 12.
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, San Diego (1980) MATHGoogle Scholar
  13. 13.
    Ladevéze, P., Leguillon, D.: Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal. 20, 485–509 (1983) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Rannacher, R.: Error control in finite element computations. In: Proc. NATO-Summer School Error Control and Adaptivity in Scientific Computing, Antalya, Turkey, Aug. 9–12. Kluwer Academic, Dordrecht (1998) Google Scholar
  15. 15.
    Rannacher, R., Suttmeier, F.T.: A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity. Comput. Methods Appl. Mech. Eng. 176, 333–361 (1999) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Suttmeier, F.T.: General approach for a posteriori error estimates for finite element solutions of variational inequalities. Comput. Mech. 27(4), 317–323 (2001) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Suttmeier, F.-T.: On concepts of PDE-software: the cellwise oriented approach in DEAL. Int. Math. Forum 2(1–4), 1–20 (2007) MathSciNetMATHGoogle Scholar
  18. 18.
    Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley/Teubner, Stuttgart (1996) MATHGoogle Scholar
  19. 19.
    Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24, 337–357 (1987) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department MathematikUniversity SiegenSiegenGermany

Personalised recommendations