CALCOLO

, Volume 43, Issue 1, pp 17–37 | Cite as

SYMMLQ-like procedure for Ax = b where A is a special normal matrix

  • H. Fassbender
  • Kh. D. Ikramov
Article

Abstract

We propose a method of Lanczos type for solving a linear system with a normal matrix whose spectrum is contained in a second-degree curve. This is a broader class of matrices than that of the (l,m)-normal matrices introduced in a recent paper by Barth and Manteuffel. Our approach is similar to that of Huhtanen in the sense that both use the condensed form of normal matrices discovered by Elsner and Ikramov. However, there are a number of differences, among which are: (i) our method is modeled after the SYMMLQ algorithm of Paige and Saunders; (ii) it uses only one matrix-vector product per step; (iii) we provide effective means for monitoring the size of the residual during the process. Numerical experiments are presented.

Keywords: generalized Krylov sequence, Rayleigh-Ritz projection,

SYMMLQ algorithm, GMRES algorithm, normal matrix

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Barth, T., Manteuffel, T.A.: Multiple recursion conjugate gradient algorithms. I. Sufficient conditions. SIAM J. Matrix Anal. Appl. 21, 768–796 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2. Elsner, L., Ikramov, Kh.D.: On a condensed form for normal matrices under finite sequences of elementary unitary similarities. Linear Algebra Appl. 254, 79–98 (1997)MATHCrossRefMathSciNetGoogle Scholar
  3. 3. Faber, V., Manteuffel, T.A.: Necessary and sufficient conditions for the existence of a conjugate gradient method. SIAM J. Numer. Anal. 21, 352–362 (1984)MATHCrossRefMathSciNetGoogle Scholar
  4. 4. Gragg, W.B.: Positive definite Toeplitz matrices, the Arnoldi process for isometric operators, and Gaussian quadrature on the unit circle. J. Comput. Appl. Math. 46, 183–198 (1993)MATHCrossRefMathSciNetGoogle Scholar
  5. 5. Huhtanen, M.: Combining normality with the FFT techniques. (Helsinki Univ. of Technology Inst. of Math. Research Reports A451) Helsinki: Helsinki Univ. of Technology 2003Google Scholar
  6. 6. Huhtanen, M.: A Hermitian Lanczos method for normal matrices. SIAM J. Matrix Anal. Appl. 23, 1092–1108 (2002)MATHCrossRefMathSciNetGoogle Scholar
  7. 7. Huhtanen, M.: Orthogonal polyanalytic polynomials and normal matrices. Math. Comp. 72, 355–373 (2002)CrossRefMathSciNetGoogle Scholar
  8. 8. Huhtanen, M., Larsen, R.M.: Exclusion and inclusion regions for the eigenvalues of a normal matrix. SIAM J. Matrix Anal. Appl. 23, 1070–1091 (2002)MATHCrossRefMathSciNetGoogle Scholar
  9. 9. Jagels, C.F., Reichel, L.: A fast minimal residual algorithm for shifted unitary matrices. Numer. Linear Algebra Appl. 1, 555–570 (1994)MATHCrossRefMathSciNetGoogle Scholar
  10. 10. Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12, 617–629 (1975)MATHCrossRefMathSciNetGoogle Scholar
  11. 11. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 856–869 (1986)MATHCrossRefMathSciNetGoogle Scholar
  12. 12. Voevodin, V.V.: The question of non-self-adjoint extension of the conjugate gradient method is closed. (Russian) Zh. Vychisl. Mat. i Mat. Fiz. 23, 477–479 (1983); transl.: USSR Comput. Math. Phys. 23 (2), 143–144 (1983)MATHMathSciNetGoogle Scholar
  13. 13. Voevodin, V.V., Tyrtyshnikov, E.E.: On a generalization of conjugate direction methods. In: Voevodin, V.V. (ed.): Numerical methods of algebra. A collection of papers. Moscow: Izdat. Moskosk Univ. 1981, pp. 3–9Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • H. Fassbender
    • 1
  • Kh. D. Ikramov
    • 1
  1. 1.Institute of Computational Mathematics, TU Braunschweig, BraunschweigGermany

Personalised recommendations