Advertisement

Journal of Wood Science

, Volume 64, Issue 5, pp 675–682 | Cite as

Thermopolymerization inhibitors generated via radiolysis of lignin

  • Igor N. Gorbarev
  • Alexander I. Kasterin
  • Polina K. Metreveli
  • Alexander V. Ponomarev
Original Article
  • 38 Downloads

Abstract

The pyrogenic conversion of lignin to a phenolic tar can be significantly enhanced by combining dry distillation with simultaneous electron-beam treatment of lignin. The tar produced by the combined method contains three times more benzenediols in comparison with conventional pyrogenic distillation method. As shown, the tar of radiation-thermal origin can inhibit the thermopolymerization of certain monomers, such as styrene. The inhibiting ability of tar exceeds that of synthetic phenolic inhibitors. In the presence of 0.025 wt% of the tar, the induction period of styrene thermopolymerization at 120 °С is at least 120 min. Radiation-thermal formation of phenolic tar obeys the chain mechanism and thereby, is a highly efficient process.

Keywords

Lignin Radiolysis Tar Benzenediols Polymerization retarders 

Notes

Acknowledgements

Authors thank the CKP FMI IPCE RAS for technical support (the linac and evaluators).

References

  1. 1.
    Córdova A, Watanabe S, Tanaka F, Notz W, Barbas CF (2002) A highly enantioselective route to either enantiomer of both α- and β-amino acid derivatives. J Am Chem Soc 124:1866–1867CrossRefPubMedGoogle Scholar
  2. 2.
    Mitsumori S, Zhang H, Ha-Yeon Cheong P, Houk KN, Tanaka F, Barbas CF (2006) Direct asymmetric anti-Mannich-type reactions catalyzed by a designed amino acid. J Am Chem Soc 128:1040–1041CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Fiege H, Voges H-W, Hamamoto T, Umemura S, Iwata T, Miki H, Fujita Y, Buysch HJ, Garbe D, Paulus W (2000) Phenol derivatives. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 521–582Google Scholar
  4. 4.
    Moad G, Solomon D (1995) The chemistry of free radical polymerization. Elsevier, New YorkGoogle Scholar
  5. 5.
    Maul J, Frushour BG, Kontoff JR, Eichenauer H, Ott KH, Schade C (2007) Polystyrene and styrene copolymers. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  6. 6.
    Ponomarev AV, Makarov IE, Ershov BG (2014) Electron-beam distillation of natural polymers. Radiat Phys Chem 94:221–225CrossRefGoogle Scholar
  7. 7.
    Ponomarev AV (2009) Electron-beam decomposition of phytogenous substances: solid-to-liquid conversion. Radiat Phys Chem 78:345–350CrossRefGoogle Scholar
  8. 8.
    Podterob AP, Bogdanovich YuV, Nizhnikova EV, Nechai OG (2004) Detoxicating properties of polyphepan evaluated in model experiments. Pharm Chem J 38:459–464CrossRefGoogle Scholar
  9. 9.
    Hunkel M, Surm H, Steinbacher M (2018) Dilatometry. Handb Therm Anal Calorim 6:103–129CrossRefGoogle Scholar
  10. 10.
    Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. Walter, New YorkGoogle Scholar
  11. 11.
    Woods R, Pikaev A (1994) Applied radiation chemistry. Radiation Processing. Wiley, New YorkGoogle Scholar
  12. 12.
    Ponomarev AV, Metreveli PK, Chulkov VN, Bludenko AV (2017) Formation of benzenediols upon electron-beam distillation of lignin mixtures with alkanes. High Energy Chem 51:380–385CrossRefGoogle Scholar
  13. 13.
    Ponomarev AV (2017) Radiolysis of lignin: prospective mechanism of high temperature decomposition. Radiat Phys Chem 141:160–167CrossRefGoogle Scholar
  14. 14.
    Kuzina SI, Shilova IA, Mikhailov AI (2011) Chemical and radiation-chemical radical reactions in lignocellulose materials. Radiat Phys Chem 80:937–946CrossRefGoogle Scholar

Copyright information

© The Japan Wood Research Society 2018

Authors and Affiliations

  • Igor N. Gorbarev
    • 1
  • Alexander I. Kasterin
    • 1
  • Polina K. Metreveli
    • 1
  • Alexander V. Ponomarev
    • 1
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations