Journal of Wood Science

, Volume 64, Issue 5, pp 690–696 | Cite as

Biodegradation of diuron in artificially contaminated water and seawater by wood colonized with the white-rot fungus Trametes versicolor

  • Toshio Mori
  • Shiho Sudo
  • Hirokazu Kawagishi
  • Hirofumi HiraiEmail author
Original Article


We investigated the potential of white-rot fungi for bioremediation of aqueous environments contaminated with diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea). First, diuron degradation activities of several white-rot fungi (Ceriporia lacerata, Phanerochaete chrysosporium, Phanerochaete sordida, Trametes versicolor) and a brown-rot fungus (Gloeophyllum trabeum) were evaluated under low- or high-nitrogen conditions. While G. trabeum showed hardly any degradation activity, white-rot fungi except for C. lacerata showed degradation activity, at least under some conditions. In particular, the activity of T. versicolor was high regardless of culture conditions (30–35% degradation at both levels of nitrogen). T. versicolor degraded diuron to two metabolites, 1-(3,4-dichlorophenyl)-3-methylurea and 1-(3,4-dichlorophenyl)urea, and did not accumulate the highly toxic metabolite 3,4-dichloroaniline. Moreover, the diuron content of artificially contaminated water dramatically decreased from 1.0 to 0.012 µM and artificially contaminated seawater (3.4% sea salt, w/v) decreased to 0.405 µM after incubation for 2 weeks with shaking on T. versicolor-colonized wood medium. These results indicated that wood medium colonized with white-rot fungi may be applicable for bioremediation and detoxification of diuron-contaminated aqueous environments.


Diuron Bioremediation Trametes versicolor Colonized wood medium Contaminated water 


  1. 1.
    Moncada A (2004) DRP report: environmental fate of diuron. California Department of Pesticide Regulation, USAGoogle Scholar
  2. 2.
    Giacomazzi S, Cochet N (2004) Environmental impact of diuron transformation: a review. Chemosphere 56:1021–1032CrossRefGoogle Scholar
  3. 3.
    Kaonga CC, Takeda K, Sakugawa H (2015) Diuron, Irgarol 1051 and Fenitrothion contamination for a river passing through an agricultural and urban area in Higashi Hiroshima City, Japan. Sci Total Environ 518–519:450–458CrossRefGoogle Scholar
  4. 4.
    Harino H, Eguchi S, Arai T, Ohji M, Yamamoto Y, Miyazaki N (2010) Antifouling biocides contamination in sediment of coastal waters from Japan. Coast Mar Sci 34:230–235Google Scholar
  5. 5.
    Tixier C, Sancleme M, Bonnemoy F, Cuer A, Veschambre H (2001) Degradation products of a phenylurea herbicide, diuron: synthesis, ecotoxicity, and biotransformation. Environ Toxicol Chem 20:1381–1389CrossRefGoogle Scholar
  6. 6.
    Ellegaard-Jensen L, Knudsen BE, Johansen A, Albers CN, Aamand J, Rosendahl S (2014) Fungal-bacterial consortia increase diuron degradation in water-unsaturated systems. Sci Total Environ 466–467:699–705CrossRefGoogle Scholar
  7. 7.
    Bending GD, Friloux M, Walker A (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol Lett 212:59–63CrossRefGoogle Scholar
  8. 8.
    Khadrani A, Seigle-Murandi F, Steiman R, Vroumsia T (1999) Degradation of three phenylurea herbicides (chlortoluron, isoproturon and diuron) by micromycetes isolated from soil. Chemosphere 38:3041–3050CrossRefGoogle Scholar
  9. 9.
    Coelho-Moreira JDS, Bracht A, da Silva de Souza AC, Oliveira RF, de Sá-Nakanishi AB, de Souza CGM, Peralta RM (2013) Degradation of diuron by Phanerochaete chrysosporium: role of ligninolytic enzymes and cytochrome P450. Biomed Res Int 2013:251354. CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Sandermann H, Heller W, Hertkorn N, Hoque E, Pieper D, Winkler R (1998) A new intermediate in the mineralization of 3,4-dichloroaniline by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 64:3305–3312PubMedPubMedCentralGoogle Scholar
  11. 11.
    Coelho-Moreira J, da S, Brugnari, Sá-Nakanishi T, Castoldi AB, de Souza R, Bracht CGM, Peralta A RM (2018) Evaluation of diuron tolerance and biotransformation by the white-rot fungus Ganoderma lucidum. Fungal Biol 122:471–478CrossRefGoogle Scholar
  12. 12.
    Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161:238–249CrossRefGoogle Scholar
  13. 13.
    Hirai H, Kondo R, Sakai K (1994) Screening of lignin-degrading fungi and their ligninolytic enzyme activities during biological bleaching of kraft pulp. Mokuzai Gakkaishi 40:980–986Google Scholar
  14. 14.
    Mester T, Field JA (1998) Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem 273:15412–15417CrossRefGoogle Scholar
  15. 15.
    Mori T, Wang J, Tanaka Y, Nagai K, Kawagishi H, Hirai H (2017) Bioremediation of the neonicotinoid insecticide clothianidin by the white-rot fungus Phanerochaete sordida. J Hazard Mater 321:586–590CrossRefGoogle Scholar
  16. 16.
    Li H, Teppen BJ, Laird DA, Johnston CT, Boyd SA (2006) Effects of increasing potassium chloride and calcium chloride ionic strength on pesticide sorption by potassium- and calcium-smectite. Soil Sci Soc Am J 70:1889–1895CrossRefGoogle Scholar
  17. 17.
    Leatham GF, Kirk TK (1983) Regulation of ligninolytic activity by nutrient nitrogen in white-rot basidiomycetes. FEMS Microbiol Lett 16:65–67CrossRefGoogle Scholar
  18. 18.
    Fratila-Apachitei LE, Hirst JA, Siebel MA, Gijzen HJ (1999) Diuron degradation by Phanerochaete chrysosporium BKM-F-1767 in synthetic and natural media. Biotechnol Lett 21:147–154CrossRefGoogle Scholar
  19. 19.
    Wang J, Hirai H, Kawagishi H (2012) Biotransformation of acetamiprid by the white-rot fungus Phanerochaete sordida YK-624. Appl Microbiol Biotechnol 93:831–835CrossRefGoogle Scholar
  20. 20.
    Van Boven M, Laruelle L, Daenens P (1990) HPLC analysis of diuron and metabolites in blood and urine. J Anal Toxicol 14:231–234CrossRefGoogle Scholar
  21. 21.
    Crane M, Babut M (2007) Environmental quality standards for water framework directive priority substances: challenges and opportunities. Integr Environ Assess Manag 3:290–296CrossRefGoogle Scholar
  22. 22.
    Rodriguez-Cruz S, Andrades MS, Sanchez-Camazano M, Sanchez-Martin MJ (2007) Relationship between the adsorption capacity of pesticides by wood residues and the properties of woods and pesticides. Environ Sci Technol 41:3613–3619CrossRefGoogle Scholar
  23. 23.
    Sørensen SR, Bending GD, Jacobsen CS, Walker A, Aamand J (2003) Microbial degradation of isoproturon and related phenylurea herbicides in and below agricultural fields. FEMS Microbiol Ecol 45:1–11CrossRefGoogle Scholar
  24. 24.
    Esposito E, Paulillo SM, Manfio GP (1998) Biodegradation of the herbicide diuron in soil by indigenous actinomycetes. Chemosphere 37:541–548CrossRefGoogle Scholar
  25. 25.
    Wang Y, Li H, Feng G, Du L, Zeng D (2017) Biodegradation of diuron by an endophytic fungus Neurospora intermedia DP8-1 isolated from sugarcane and its potential for remediating diuron-contaminated soils. PLoS One 12:e0182556CrossRefGoogle Scholar
  26. 26.
    Baldrian P (2008) Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol 1:4–12CrossRefGoogle Scholar

Copyright information

© The Japan Wood Research Society 2018

Authors and Affiliations

  • Toshio Mori
    • 1
  • Shiho Sudo
    • 1
  • Hirokazu Kawagishi
    • 1
    • 2
    • 3
  • Hirofumi Hirai
    • 1
    • 3
    Email author
  1. 1.Faculty of AgricultureShizuoka UniversityShizuokaJapan
  2. 2.Research Institute of Green Science and TechnologyShizuoka UniversityShizuokaJapan
  3. 3.Graduate School of Science and TechnologyShizuoka UniversityShizuokaJapan

Personalised recommendations