Advertisement

Journal of Wood Science

, Volume 64, Issue 5, pp 477–484 | Cite as

The gene expression analysis of Arabidopsis thaliana ABC transporters by real-time PCR for screening monolignol-transporter candidates

  • Manami Takeuchi
  • Atsushi Watanabe
  • Miho Tamura
  • Yuji Tsutsumi
Original Article
  • 131 Downloads

Abstract

The transport of monolignols from the cytosol to the cell wall is essential for lignin synthesis. The ATP-binding cassette (ABC) transporters may be involved in the transport of lignin precursors. ABC transporter genes subjected to expression analysis were chosen based on two criteria for screening candidate transporter genes related to lignification. The expression levels of 15 target genes in five plant organs were analyzed by real-time PCR. Five transporter genes (ABCG29, ABCG30, ABCG33, ABCG34, and ABCG37), which were simultaneously expressed with the reference genes, were selected as candidates. The candidate gene expression levels in root tissues of T-DNA insertion mutants were determined by semi-quantitative reverse transcription PCR. ABCG30 was more highly expressed in the abcg34 mutant than in the wild-type plants, while the expression of ABCG34 was twofold higher in the abcg30 mutant plants than in the wild-type plants. Thus, the expression of ABCG30 and ABCG34 may affect each other. There was no significant change in lignin content and composition in the single-gene knockout mutants of the candidate transporter genes, which suggested that each candidate gene did not solely contribute to lignin synthesis.

Keywords

Arabidopsis thaliana ATP-binding cassette transporter Lignification Gene expression Knockout mutant 

Notes

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Scientific Research (B) [Grant number 26292097 (Y.T.)], JSPS KAKENHI Exploratory Research [Grant number 15K14774 (Y.T.)], and JSPS KAKENHI Scientific Research (B) [Grant number 17H03846 (Y.T.)]. We thank Edanz Group (http://www.edanzediting.com/ac) for editing a draft of this manuscript.

Supplementary material

10086_2018_1733_MOESM1_ESM.pdf (21 kb)
Online Resource 1 (PDF 20 KB)
10086_2018_1733_MOESM2_ESM.pdf (18 kb)
Online Resource 2 (PDF 17 KB)
10086_2018_1733_MOESM3_ESM.pdf (203 kb)
Online Resource 3 (PDF 203 KB)
10086_2018_1733_MOESM4_ESM.pdf (197 kb)
Online Resource 4 (PDF 197 KB)
10086_2018_1733_MOESM5_ESM.pdf (209 kb)
Online Resource 5 (PDF 208 KB)

References

  1. 1.
    Ehlting J, Mattheus N, Aeschliman DS, Li E, Hamberger B, Cullis IF, Zhuang J, Kaneda M, Mansfield SD, Samuels L, Ritland K, Ellis BE, Bohlmann J, Douglas CJ (2005) Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant J 42:618–640CrossRefPubMedGoogle Scholar
  2. 2.
    Miao YC, Liu CJ (2010) ATP-binding cassette-like transporters are involved in the transport of lignin precursors across plasma and vacuolar membranes. Proc Natl Acad Sci USA 107:22728–22733CrossRefPubMedGoogle Scholar
  3. 3.
    Kaneda M, Schuetz M, Lin B, Chanis C, Hamberger B, Western T, Ehlting J, Samuels A (2011) ABC transporters coordinately expressed during lignification of Arabidopsis stems include a set of ABCBs associated with auxin transport. J Exp Bot 62:2063–2077CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Alejandro S, Lee Y, Tohge T, Sudre D, Osorio S, Park J, Bovet L, Lee Y, Geldner N, Fernie AR, Martinoia E (2012) AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr Biol 22:1207–1212CrossRefPubMedGoogle Scholar
  5. 5.
    Henikoff S, Greene EA, Pietrokovski S, Bork P, Attwood TK, Hood L (1997) Gene families: the taxonomy of protein paralogs and chimeras. Science 278:609–614CrossRefPubMedGoogle Scholar
  6. 6.
    Kos V, Ford RC (2009) The ATP-binding cassette family: a structural perspective. Cell Mol Life Sci 66:3111–3126CrossRefPubMedGoogle Scholar
  7. 7.
    Hwang JU, Song WY, Hong D, Ko D, Yamaoka Y, Jang S, Yim S, Lee E, Khare D, Kim K, Palmgren M, Yoon HS, Martinoia E, Lee Y (2016) Plant ABC transporters enable many unique aspects of a terrestrial plant’s lifestyle. Mol Plant 9:338–355CrossRefPubMedGoogle Scholar
  8. 8.
    Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu Ü, Lee Y, Martinoia E, Murphy A, Rea PA, Samuels L, Schulz B, Spalding EJ, Yazaki K, Theodoulou FL (2008) Plant ABC proteins: a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159CrossRefPubMedGoogle Scholar
  9. 9.
    Cock JM, Sterck L, Rouze P, Scornet D, Allen AE, Amoutzias G, Anthouard V, Artiguenave F, Aury JM, Badger JH, Beszteri B, Billiau K, Bonnet E, Bothwell JH, Bowler C, Boyen C, Brownlee C, Carrano CJ, Charrier B, Cho GY, Coelho SM, Collen J, Corre E, Da Silva C, Delage L, Delaroque N, Dittami SM, Doulbeau S, Elias M, Farnham G, Gachon CMM, Gschloessl B, Heesch S, Jabbari K, Jubin C, Kawai H, Kimura K, Kloareg B, Kupper FC, Lang D, Le Bail A, Leblanc C, Lerouge P, Lohr M, Lopez PJ, Martens C, Maumus F, Michel G, Miranda-Saavedra D, Morales J, Moreau H, Motomura T, Nagasato C, Napoli CA, Nelson DR, Nyvall-Collen P, Peters AF, Pommier C, Potin P, Poulain J, Quesneville H, Read B, Rensing SA, Ritter A, Rousvoal S, Samanta M, Samson G, Schroeder DC, Segurens B, Strittmatter M, Tonon T, Tregear JW, Valentin K, von Dassow P, Yamagishi T, Van de Peer Y, Wincker P (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621CrossRefPubMedGoogle Scholar
  10. 10.
    Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RHY, Aerts A, Arredondo FD, Baxter L, Bensasson D, Beynon JL, Chapman J, Damasceno CMB, Dorrance AE, Dou D, Dickerman AW, Dubchak IL, Garbelotto M, Gijzen M, Gordon SG, Govers F, Grunwald NJ, Huang W, Ivors KL, Jones RW, Kamoun S, Krampis K, Lamour KH, Lee MK, McDonald WH, Medina M, Meijer HJG, Nordberg EK, Maclean DJ, Ospina-Giraldo MD, Morris PF, Phuntumart V, Putnam NH, Rash S, Rose JKC, Sakihama Y, Salamov AA, Savidor A, Scheuring CF, Smith BM, Sobral BWS, Terry A, Torto-Alalibo TA, Win J, Xu Z, Zhang H, Grigoriev IV, Rokhsar DS, Boore JL (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313:1261–1266CrossRefPubMedGoogle Scholar
  11. 11.
    Anjard C, Loomis WF (2002) Evolutionary analyses of ABC transporters of Dictyostelium discoideum. Eukaryot Cell 1:643–652CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Campbell EJ, Schenk PM, Kazan K, Penninckx IAMA., Anderson JP, Maclean DJ, Cammue B, Ebert PR, Manners JM (2003) Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis. Plant Physiol 133:1272–1284CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bessire M, Borel S, Fabre G, Carraça L, Efremova N, Yephremov A, Cao Y, Jetter R, Jacquat AC, Métraux JP, Nawrath C (2011) A member of the PLEIOTROPIC DRUG RESISTANCE family of ATP binding cassette transporters is required for the formation of a functional cuticle in Arabidopsis. Plant Cell 23:1958–1970CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Van Acker R, Vanholme R, Storme V, Mortimer JC, Dupree P, Boerjan W (2013) Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnol Biofuels.  https://doi.org/10.1186/1754-6834-6-46 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Espiñeira JM, Novo Uzal E, Gómez Ros LV, Carrión JS, Merino F, Ros Barceló A, Pomar F (2011) Distribution of lignin monomers and the evolution of lignification among lower plants. Plant Biol 13:59–68CrossRefPubMedGoogle Scholar
  16. 16.
    Takeuchi M, Kegasa T, Watanabe A, Tamura M, Tsutsumi Y (2017) Expression analysis of transporter genes for screening candidate monolignol transporters using Arabidopsis thaliana cell suspensions during tracheary element differentiation. J Plant Res 131:297–305CrossRefPubMedGoogle Scholar
  17. 17.
    Johnson DB, Moore WE, Zank LC (1961) The spectrometric determination of lignin in small wood samples. Tappi 44:793–798Google Scholar
  18. 18.
    Kuroda KI, Nishimura N, Izumi A, Dimmel DR (2002) Pyrolysis of lignin in the presence of tetramethylammonium hydroxide: a convenient method for S/G ratio determination. J Agric Food Chem 50:1022–1027CrossRefPubMedGoogle Scholar
  19. 19.
    Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin-I T, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69CrossRefPubMedGoogle Scholar
  20. 20.
    Pandey JL, Kiemle SN, Richard TL, Zhu Y, Cosgrove DJ, Anderson CT (2016) Investigating biochemical and developmental dependencies of lignification with a click-compatible monolignol analog in Arabidopsis thaliana stems. Front Plant Sci 7:1–15Google Scholar
  21. 21.
    Badri DV, Quintana N, El Kassis EG, Kim HK, Choi YH, Sugiyama A, Verpoorte R, Martinoia E, Manter DK, Vivanco JM (2009) An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol 151:2006–2017CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Khare D, Choi H, Huh SU, Bassin B, Kim J, Martinoia E, Sohn KH, Paek KH, Lee Y (2017) Arabidopsis ABCG34 contributes to defense against necrotrophic pathogens by mediating the secretion of camalexin. Proc Natl Acad Sci 114:E5712–E5720CrossRefPubMedGoogle Scholar
  23. 23.
    Ziegler J, Schmidt S, Strehmel N, Scheel D, Abel S (2017) Arabidopsis transporter ABCG37/PDR9 contributes primarily highly oxygenated coumarins to root exudation. Sci Rep.  https://doi.org/10.1038/s41598-017-03250-6 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bird D, Beisson F, Brigham A, Shin J, Greer S, Jetter R, Kunst L, Wu X, Yephremov A, Samuels L (2007) Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J 52:485–498CrossRefPubMedGoogle Scholar
  25. 25.
    Panikashvili D, Savaldi-Goldstein S, Mandel T, Yifhar T, Franke RB, Hofer R, Schreiber L, Chory J, Aharoni A (2007) The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion. Plant Physiol 145:1345–1360CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kuromori T, Sugimoto E, Shinozaki K (2011) Arabidopsis mutants of AtABCG22, an ABC transporter gene, increase water transpiration and drought susceptibility. Plant J 67:885–894CrossRefPubMedGoogle Scholar
  27. 27.
    Strader LC, Bartel B (2009) The Arabidopsis PLEIOTROPIC DRUG RESISTANCE8/ABCG36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-butyric acid. Plant Cell 21:1992–2007CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Campe R, Langenbach C, Leissing F, Popescu GV, Popescu SC, Goellner K, Beckers GJM, Conrath U (2016) ABC transporter PEN3/PDR8/ABCG36 interacts with calmodulin that, like PEN3, is required for Arabidopsis nonhost resistance. New Phytol 209:294–306CrossRefPubMedGoogle Scholar
  29. 29.
    Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218CrossRefPubMedGoogle Scholar
  30. 30.
    Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci 107:2355–2360CrossRefPubMedGoogle Scholar
  31. 31.
    Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19:1855–1860CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhong R, Richardson EA, Ye Z (2007) The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. Plant Cell 19:2776–2792CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhou J, Lee C, Zhong R, Ye ZH (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21:248–266CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Schilmiller AL, Stout J, Weng JK, Humphreys J, Ruegger MO, Chapple C (2009) Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in Arabidopsis. Plant J 60:771–782CrossRefPubMedGoogle Scholar
  35. 35.
    Ruel K, Berrio-Sierra J, Mir-Derikvand M, Pollet B, Thévenin J, Lapierre C, Jouanin L, Joseleau JP (2009) Impact of CCR1 silencing on the assembly of lignified secondary walls in Arabidopsis thaliana. New Phytol 184:99–113CrossRefPubMedGoogle Scholar
  36. 36.
    Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L, Séguin A (2005) CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17:2059–2076CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Shigeto J, Itoh Y, Hirao S, Ohira K, Fujita K, Tsutsumi Y (2015) Simultaneously disrupting AtPrx2, AtPrx25 and AtPrx71 alters lignin content and structure in Arabidopsis stem. J Integr Plant Biol 57:349–356CrossRefPubMedGoogle Scholar
  38. 38.
    Funk V, Kositsup B, Zhao C, Beers EP (2002) The Arabidopsis xylem peptidase XCP1 is a tracheary element vacuolar protein that may be a papain ortholog. Plant Physiol 128:84–94CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japan Wood Research Society 2018

Authors and Affiliations

  • Manami Takeuchi
    • 1
  • Atsushi Watanabe
    • 2
  • Miho Tamura
    • 2
  • Yuji Tsutsumi
    • 2
  1. 1.Department of Agro-environmental Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
  2. 2.Faculty of AgricultureKyushu UniversityFukuokaJapan

Personalised recommendations