Journal of Wood Science

, Volume 62, Issue 3, pp 285–293 | Cite as

Screening for melanogenesis-controlled agents using Sudanese medicinal plants and identification of active compounds in the methanol extract of Terminalia brownii bark

  • Kosei Yamauchi
  • Tohru Mitsunaga
  • Ali Mahmoud Muddathir


We isolated and identified compounds in medicinal plant extracts that could control melanogenesis. Sudanese medicinal plants were extracted with methanol (MeOH) and 50 % ethanol (EtOH)/water, yielding 104 extracts that were screened for melanogenic activity using B16 melanoma cells. The MeOH extract of Terminalia brownii bark dose-dependently enhanced intracellular and extracellular melanogenesis, with no cytotoxicity. Furthermore, we isolated and identified the components in T. brownii MeOH extract. Gallic acid (1), α,β-punicalagin (2), α,β-terchebulin (3), ellagic acid 4-O-α-l-rhamnopyranoside (4), ellagic acid (5), and 3,4,3′-tri-O-methylellagic acid (6) were isolated by chromatography and identified using nuclear magnetic resonance (NMR), matrix-assisted laser desorption/ionization (MALDI) or ultra-performance liquid chromatography–time-of-flight mass spectrometry (UPLC–TOFMS), and ultraviolet (UV) spectroscopy data. Among the isolated compounds, 2, 3, 5, and 6 enhanced melanogenesis. Furthermore, compound 1 inhibited intracellular and extracellular melanogenesis with no cytotoxicity.


Sudanese medicinal plants B16 melanoma cell Terminalia brownii Tyrosinase 


  1. 1.
    Lukiewicz S (1972) The biological role of melanin. I. New concepts and methodological approaches. Folia Histochem Cyto 10:93–108Google Scholar
  2. 2.
    Wang H, Pan Y, Tang X, Huang Z (2006) Isolation and characterization of melanin from Osmanthus fragrans’ seeds. LWT-Food Sci Technol 39:496–502CrossRefGoogle Scholar
  3. 3.
    Alvaro SF, Jos NRL, Francisco GC (1995) Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta 1247:1–11CrossRefGoogle Scholar
  4. 4.
    Batubara I, Darusman LK, Mitsunaga T, Rahminiwati M, Djauhari E (2010) Potency of Indonesian medicinal plants as tyrosinase inhibitor and antioxidant agent. J Biol Sci 2:138–144Google Scholar
  5. 5.
    Koko WS, Mesaik AM, Yousaf S, Galal M, Choudhary IM (2008) In vitro immunomodulating properties of selected Sudanese medicinal plants. J Ethnopharmacol 118:26–34CrossRefPubMedGoogle Scholar
  6. 6.
    Muddathir AM, Mitsunaga T (2013) Evaluation of anti-acne activity of selected Sudanese medicinal plants. J Wood Sci 59:73–79CrossRefGoogle Scholar
  7. 7.
    Elegami AA, Almagboul AZ, Omer ME, El Tohami MS (2001) Sudanese plants used in folkloric medicine:screening for antibacterial activity. Part X. Fitoterapia 72:810–817CrossRefPubMedGoogle Scholar
  8. 8.
    Ali H, Konig GM, Khalid SA, Wright AD, Kaminsky R (2002) Evaluation of selected Sudanese medicinal plants for their in vitro activity against hemoflagellates, selected bacteria, HIV-1-RT and tyrosine kinase inhibitory, and for cytotoxicity. J Ethnopharmacol 83:219–228CrossRefPubMedGoogle Scholar
  9. 9.
    Mbwambo ZH, Moshi MJ, Masimba PJ, Kapingu MC, Nondo RSO (2007) Antimicrobial activity and brine shrimp toxicity of extracts of Terminalia brownii roots and stem. BMC Complement Altern Med 7:9CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gallo MB, Rocha WC, da Cunha US, Diogo FA, da Silva FC, Vieira PC, Vendramim JD, Fernandes JB, da Silva MF, Batista-Pereira LG (2006) Bioactivity of extracts and isolated compounds from Vitex polygama(Verbenaceae) and Siphoneugena densiflora (Myrtaceae) against Spodoptera frugiperda (Lepidoptera: Noctuidae). Pest Manag Sci 62:1072–1081CrossRefPubMedGoogle Scholar
  11. 11.
    Pfundstein B, El Desouky SK, Hull WE, Haubner R, Erben G, Owen RW (2010) Polyphenolic compounds in the fruits of Egyptian medicinal plants (Terminalia bellerica, Terminalia chebula and Terminalia horrida): characterization, quantitation and determination of antioxidant capacities. Phytochemistry 71:1132–1148CrossRefPubMedGoogle Scholar
  12. 12.
    Silva O, Gomes TE, Wolfender JL, Marston A, Hostettmann K (2000) Application of high performance liquid chromatography coupled with ultraviolet spectroscopy and electrospray mass spectrometry to the characterisation of ellagitannins from Terminalia macroptera roots. Pharm Res 17:1396–1401CrossRefPubMedGoogle Scholar
  13. 13.
    Lin T, Nonaka G, Nishioka I, Ho F (1990) Tannins and related compounds. CII. Structures of terchebulin, an ellagitannin having a novel teraphenylcarboxylic acid (terchebulic acid) moiety, and biogenetically related tannins from Terminalia chebula Retz. Chem Pharm Bull 38:3004–3008CrossRefGoogle Scholar
  14. 14.
    Terashima S, Shimizu M, Nakayama H, Ishikura M, Ueda Y, Imai K, Suzui A, Morita N (1990) Studies on aldose reductase inhibitors from medicinal plant of “sinfito”, Potentilla candicans, and further synthesis of their related compounds. Chem Pharm Bull 38:2733–2736CrossRefPubMedGoogle Scholar
  15. 15.
    Guo Z, Xu Y, Han L, Bo X, Huang C, Ni L (2011) Antioxidant and cytotoxic activity of the acetone extracts of root of Euphorbia hylonoma and its ellagic acid derivatives. J Med Plants Res 5:5584–5589Google Scholar
  16. 16.
    Elkhateeb A, Subeki Takahashi K, Matsuura H, Yamasaki M, Yamato O, Maede Y, Katakura T, Yoshihara T, Nabeta K (2005) Anti-babesial ellagic acid rhamnosides from the bark of Elaeocarpus parvifolius. Phytochemistry 66:2577–2580CrossRefPubMedGoogle Scholar
  17. 17.
    Maeda H, Matsuo Y, Tanaka T, Kouno I (2009) Euscaphinin, a new ellagitannin dimer from Euscaphis japonica (THUNB.) KANITZ. Chem Pharm Bull 57:421–423CrossRefPubMedGoogle Scholar
  18. 18.
    Yamauchi K, Mitsunaga T, Batubara I (2011) Isolation, identification and tyrosinase inhibitory activities of the extractives from Allamanda cathartica. Nat Resour 2:167–172Google Scholar
  19. 19.
    Arung ET, Matsubara E, Kusuma IW, Sukaton E, Shimizu K, Kondo R (2011) Inhibitory components from the buds of clove (Syzygium aromaticum) on melanin formation in B16 melanoma cells. Fitoterapia 82:198–202CrossRefPubMedGoogle Scholar
  20. 20.
    Yamauchi K, Mitsunaga T, Inagaki M, Suzuki T (2014) Synthesized quercetin derivatives stimulate melanogenesis in B16 melanoma cells by influencing the expression of melanin biosynthesis proteins MITF and p38 MAPK. Bioorg Med Chem 22:3331–3340CrossRefPubMedGoogle Scholar
  21. 21.
    Ye Y, Chu JH, Wang H, Xu H, Chou GX, Leung AK, Fong WF, Yu ZL (2010) Involvement of p38 MAPK signaling pathway in the anti-melanogenic effect of San-bai-tang, a Chinese herbal formula, in B16 cells. J Ethnopharmacol 132:533–535CrossRefPubMedGoogle Scholar
  22. 22.
    Hirata N, Naruto S, Ohguchi K, Akao Y, Nozawa Y, Iinumac M, Matsuda H (2007) Mechanism of the melanogenesis stimulation activity of (−)-cubebin in murine B16 melanoma cells. Bioorg Med Chem 15:4897–4902CrossRefPubMedGoogle Scholar
  23. 23.
    Jian D, Jiang D, Su J, Chen W, Hu X, Kuang Y, Xie H, Li J, Chen X (2011) Diethylstilbestrol enhances melanogenesis via cAMP-PKA-mediating up-regulation of tyrosinase and MITF in mouse B16 melanoma cells. Steroids 76:1297–1304CrossRefPubMedGoogle Scholar

Copyright information

© The Japan Wood Research Society 2016

Authors and Affiliations

  • Kosei Yamauchi
    • 1
  • Tohru Mitsunaga
    • 1
  • Ali Mahmoud Muddathir
    • 2
  1. 1.The United Graduate School of Agricultural Science, Gifu UniversityGifuJapan
  2. 2.Department of Horticulture, Faculty of AgricultureUniversity of KhartoumKhartoum North-ShambatSudan

Personalised recommendations