Journal of Wood Science

, Volume 61, Issue 2, pp 178–184 | Cite as

Molecular cloning, characterization, and expression analysis of a β-N-acetylhexosaminidase (LeHex20B) from the shiitake mushroom, Lentinula edodes

  • Naotake Konno
  • Ayumi Obara
  • Yuichi Sakamoto
Original article


We previously reported on a β-N-acetylhexosaminidase, LeHex20A, belonging to glycoside hydrolase family 20 (GH20), from the fruiting body of Lentinula edodes (shiitake mushroom). In this study, we purified, cloned, and characterized another β-N-acetylhexosaminidase, LeHex20B, from L. edodes fruiting bodies. The cDNA of LeHex20B includes an open reading frame of 1,686 bp encoding a 20 amino acid signal peptide and a 541 amino acid mature protein. The amino acid sequence identity of LeHex20A and LeHex20B was 57 %, and LeHex20B had high sequence identity to GH20 proteins; thus, LeHex20B belongs to GH family 20. LeHex20B showed β-N-acetylhexosaminidase activity and catalyzed degradation of chitooligosaccharides (GlcNAc2-6) exolytically with N-acetylglucosamine (GlcNAc) production. The maximum LeHex20B activity was observed at pH 5.0 and at 60 °C. LeHex20B had highest catalytic efficiency (k cat/K m) for GlcNAc3 and showed high affinity for GlcNAc3-6. The transcript level of LeHex20A was significantly increased in fruiting bodies after harvest, suggesting that LeHex20A is mainly involved in fruiting body autolysis. On the other hand, LeHex20B was highly expressed in young fruiting bodies and mycelia. Therefore, LeHex20B seems to be mainly involved in elongation of fruiting bodies and mycelia.


Shitake mushroom Basidiomycete Chitin β-N-acetylhexosaminidase Glycoside hydrolase family 20 



We thank Ms. Akiko Uchidate, Ms. Miyuki Ito, Ms. Junko Kawaguchi, and Ms. Shiho Sato for their help with experiments. We are grateful to Dr. Arend F. van Peer for his suggestion and comments. This research was supported by a Grant-in-Aid for Scientific Research to N. K. (no. 2510648) from the Japan Society for the Promotion of Science (JSPS), by grants for project research (Development of fundamental technology for analysis and evaluation of functional agricultural products and functional foods).


  1. 1.
    Gow NAR, Gooday GW (1983) Ultrastructure of chitin in hyphae of Candida albicans and other dimorphic and mycelial fungi. Protoplasma 115:52–58CrossRefGoogle Scholar
  2. 2.
    Kamada T, Takemaru T, Prosser JI, Gooday GW (1991) Right and left handed helicity of chitin microfibrils in stipe cells in Coprinus cinereus. Protoplasma 165:64–70CrossRefGoogle Scholar
  3. 3.
    Vetter J (2007) Chitin content of cultivated mushrooms Agaricus bisporus, Pleurotus ostreatus and Lentinula edodes. Food Chem 102:6–9CrossRefGoogle Scholar
  4. 4.
    Kamada T, Hamada Y, Takemaru T (1982) Autolysis in vitro of the stipe cell wall in Coprinus macrorhizus. Microbiology 128:1041–1046CrossRefGoogle Scholar
  5. 5.
    Kües U (2000) Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol Mol Biol Rev 64:316–353CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Brurberg MB, Nes IF, Eijsink VG (1996) Comparative studies of chitinases A and B from Serratia marcescens. Microbiology 142:1581–1589CrossRefPubMedGoogle Scholar
  7. 7.
    Tanaka T, Fukui T, Imanaka T (2001) Different cleavage specificities of the dual catalytic domains in chitinase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Biol Chem 276:35629–35635CrossRefPubMedGoogle Scholar
  8. 8.
    Keyhani NO, Roseman S (1996) The chitin catabolic cascade in the marine bacterium Vibrio furnissii. Molecular cloning, isolation, and characterization of a periplasmic β-N-acetylglucosaminidase. J Biol Chem 271:33425–33434CrossRefPubMedGoogle Scholar
  9. 9.
    Yang Q, Liu T, Liu F, Qu M, Qian X (2008) A novel β-N-acetyl-d-hexosaminidase from the insect Ostrinia furnacalis (Guenée). FEBS J 275:5690–5702CrossRefPubMedGoogle Scholar
  10. 10.
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The Carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Drouillard S, Armand S, Davies GJ, Vorgias CE, Henrissat B (1997) Serratia marcescens chitobiase is a retaining glycosidase utilizing substrate acetamido group participation. Biochem J 328:945–949PubMedCentralPubMedGoogle Scholar
  12. 12.
    Jones CS, Kosman DJ (1980) Purification, properties, kinetics, and mechanism of β-N-acetylglucosamidase from Aspergillus niger. J Biol Chem 255:11861–11869PubMedGoogle Scholar
  13. 13.
    Carsolio C, Gutiérrez A, Jiménez B, Van Montagu M, Herrera-Estrella A (1994) Characterization of ech-42, a Trichoderma harzianum endochitinase gene expressed during mycoparasitism. Proc Natl Acad Sci U S A 91:10903–10907CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Seidl V, Druzhinina IS, Kubicek CP (2006) A screening system for carbon sources enhancing β-N-acetylglucosaminidase formation in Hypocrea atroviridis (Trichoderma atroviride). Microbiology 152:2003–2012CrossRefPubMedGoogle Scholar
  15. 15.
    López-Mondéjar R, Catalano V, Kubicek CP, Seidl V (2009) The β-N-acetylglucosaminidases NAG1 and NAG2 are essential for growth of Trichoderma atroviride on chitin. FEBS J 276:5137–5148CrossRefPubMedGoogle Scholar
  16. 16.
    Shin KS, Kwon NJ, Kim YH, Park HS, Kwon GS, Yu JH (2009) Differential roles of the ChiB chitinase in autolysis and cell death of Aspergillus nidulans. Eukaryot Cell 8:738–746CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Rast DM, Horsch M, Furter R, Gooday GW (1991) A complex chitinolytic system in exponentially growing mycelium of Mucor rouxii: properties and function. J Gen Microbiol 137:2797–2810CrossRefPubMedGoogle Scholar
  18. 18.
    Kim S, Matsuo I, Ajisaka K, Nakajima H, Kitamoto K (2002) Cloning and characterization of the nagA gene that encodes β-N-acetylglucosaminidase from Aspergillus nidulans and its expression in Aspergillus oryzae. Biosci Biotechnol Biochem 66:2168–2175CrossRefPubMedGoogle Scholar
  19. 19.
    Shida M, Ushioda Y, Nakajima T, Matsuda K (1981) Structure of the alkali-insoluble skeletal glucan of Lentinus edodes. J Biochem 90:1093–1100PubMedGoogle Scholar
  20. 20.
    Iten W, Matile P (1970) Role of chitinase and other lysosomal enzymes of Coprinus Zagopus in the autolysis of fruiting bodies. J Gen Microbiol 61:301–309CrossRefGoogle Scholar
  21. 21.
    Konno N, Takahashi H, Nakajima M, Takeda T, Sakamoto Y (2012) Characterization of β-N-acetylhexosaminidase (LeHex20A), a member of glycoside hydrolase family 20, from Lentinula edodes (shiitake mushroom). AMB Express 2:29CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Nagai M, Kawata M, Watanabe H, Ogawa M, Saito K, Takesawa T, Kanda K, Sato T (2003) Important role of fungal intracellular laccase for melanin synthesis: purification and characterization of an intracellular laccase from Lentinula edodes fruit bodies. Microbiology 149:2455–2462CrossRefPubMedGoogle Scholar
  23. 23.
    Konno N, Sakamoto Y (2011) An endo-β-1,6-glucanase involved in Lentinula edodes fruiting body autolysis. Appl Microbiol Biotechnol 91:1365–1373CrossRefPubMedGoogle Scholar
  24. 24.
    Sakamoto Y, Irie T, Sato T (2005) Isolation and characterization of a fruiting body-specific exo-β-1,3-glucanase-encoding gene, exg1, from Lentinula edodes. Curr Genet 47:244–252CrossRefPubMedGoogle Scholar
  25. 25.
    Forestry and Forest Products Research Institute, Tsukuba, Japan, Forestgen, Accessed 25 July 2013
  26. 26.
    Sakamoto Y, Minato K, Nagai M, Kawakami S, Mizuno M, Sato T (2005) Characterization of the Lentinula edodes exg2 gene encoding a lentinan-degrading exo-β-1,3-glucanase. Curr Genet 48:195–203CrossRefPubMedGoogle Scholar
  27. 27.
    Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786CrossRefPubMedGoogle Scholar
  28. 28.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Hirano T, Sato T, Okawa K, Kanda K, Yaegashi K, Enei H (1999) Isolation and characterization of the glyceraldehyde-3-phosphate dehydrogenase gene of Lentinus edodes. Biosci Biotechnol Biochem 63:1223–1227CrossRefPubMedGoogle Scholar
  30. 30.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  31. 31.
    Hsu SC, Lockwood JL (1975) Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl Microbiol 29:422–426PubMedCentralPubMedGoogle Scholar
  32. 32.
    Tanaka T, Fujiwara S, Nishikori S, Fukui T, Takagi M, Imanaka T (1999) A unique chitinase with dual active sites and triple substrate binding sites from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. Appl Environ Microbiol 65:5338–5344PubMedCentralPubMedGoogle Scholar
  33. 33.
    Grigoriev IV, Cullen D, Goodwin SB, Hibbett D, Jeffries TW, Kubicek CP, Kuske C, Magnuson JK, Martin F, Spatafora JW, Tsang A, Baker SE (2011) Fueling the future with fungal genomics. Mycology 2:192–209Google Scholar
  34. 34.
    Drouillard S, Armand S, Davies GJ, Vorgias CE, Henrissat B (1997) Serratia marcescens chitobiase is a retaining glycosidase utilizing substrate acetamido group participation. Biochem J 328:945–949PubMedCentralPubMedGoogle Scholar
  35. 35.
    Jones CS, Kosman DJ (1980) Purification, properties, kinetics, and mechanism of β-N-acetylglucosamidase from Aspergillus niger. J Biol Chem 255:11861–11869PubMedGoogle Scholar
  36. 36.
    Intra J, Pavesi G, Horner DS (2008) Phylogenetic analyses suggest multiple changes of substrate specificity within the glycosyl hydrolase 20 family. BMC Evol Biol 8:214CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Mayer C, Vocadlo DJ, Mah M, Rupitz K, Stoll D, Warren RA, Withers SG (2006) Characterization of a β-N-acetylhexosaminidase and a β-N-acetylglucosaminidase/β-glucosidase from Cellulomonas fimi. FEBS J 273:2929–2941CrossRefPubMedGoogle Scholar
  38. 38.
    Suginta W, Chuenark D, Mizuhara M, Fukamizo T (2010) Novel β-N-acetylglucosaminidases from Vibrio harveyi 650: cloning, expression, enzymatic properties, and subsite identification. BMC Biochem 11:40CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Sakamoto Y, Watanabe H, Nagai M, Nakade K, Takahashi M, Sato T (2006) Lentinula edodes tlg1 encodes a thaumatin-like protein that is involved in lentinan degradation and fruiting body senescence. Plant Physiol 141:793–801CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Sakamoto Y, Nakade K, Sato T (2009) Characterization of the post-harvest changes in gene transcription in the gill of the Lentinula edodes fruiting body. Curr Genet 55:409–423CrossRefPubMedGoogle Scholar
  41. 41.
    Sakamoto Y, Nakade K, Konno N (2011) Endo-β-1,3-glucanase GLU1, from the fruiting body of Lentinula edodes, belongs to a new glycoside hydrolase family. Appl Environ Microbiol 77:8350–8354CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Kang Y, Kim H, Choi HT (2013) Biochemical characterization of chitinase 2 expressed during the autolytic phase of the inky cap Coprinellus congregatus. J Microbiol 51:189–193CrossRefPubMedGoogle Scholar

Copyright information

© The Japan Wood Research Society 2015

Authors and Affiliations

  1. 1.Iwate Biotechnology Research CenterKitakami-ShiJapan
  2. 2.Department of Applied Biological ChemistryUtsunomiya UniversityUtsunomiyaJapan

Personalised recommendations