Advertisement

Journal of Wood Science

, Volume 55, Issue 4, pp 241–249 | Cite as

Structure and properties of the cellulose microfibril

  • Yoshiharu NishiyamaEmail author
Review Article

Abstract

The current structural models of the cellulose microfibril as well as its mechanical and thermal properties are reviewed. The cellulose microfibril can be considered as a single thin and long crystalline entity with highly anisotropic physical properties. The contribution and limit of different methods employed such as electron microscopy, infrared spectroscopy, X-ray scattering and diffraction, solid state nuclear magnetic resonance spectroscopy, and molecular modeling are also discussed.

Key words

Cellulose microfibril X-Ray diffraction Transmission electron microscopy 13C solid state NMR Elastic modulus 

References

  1. 1.
    Sponsler OL (1931) Orientation of cellulose space lattice in the cell wall. Additional X-ray data from Valonia cell-wall. Protoplasma 12:241–255CrossRefGoogle Scholar
  2. 2.
    Mukherjee SM, Woods HJ (1953) X-Ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochim Biophys Acta 10:499–511CrossRefPubMedGoogle Scholar
  3. 3.
    Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65CrossRefPubMedGoogle Scholar
  4. 4.
    Frey-Wyssling A (1955) On the crystal structure of cellulose I. Biochim Biophys Acta 18:166–168CrossRefPubMedGoogle Scholar
  5. 5.
    Cousins SK, Brown RM Jr (1995) Cellulose I microfibril assembly-computational molecular mechanics energy analysis favours bonding by van der Waals forces as the initial step in crystallization. Polymer 36:3885–3888CrossRefGoogle Scholar
  6. 6.
    Kreger AR (1957) New crystallite orientations of cellulose I in Spirogyra cell walls. Nature 180:914–915CrossRefGoogle Scholar
  7. 7.
    Kim NH, Herth W, Vuong R, Chanzy H (1996) The cellulose system in the cell wall of Micrasterias. J Struct Biol 117:195–203CrossRefPubMedGoogle Scholar
  8. 8.
    Koyama M, Sugiyama J, Itoh T (1997) Systematic survey on crystalline features of algal celluloses. Cellulose 4:147–160CrossRefGoogle Scholar
  9. 9.
    Revol JF, Gancet C, Goring DAI (1982) Orientation of cellulose crystallites in the S2 layer of spruce and birch wood cell walls. Wood Sci 14:120–126Google Scholar
  10. 10.
    Näslund P, Vuong R, Chanzy H, Jésior JC (1988) Diffraction contrast transmission electron microscopy on flax fiber ultrathin cross sections. Text Res J 58:414–417CrossRefGoogle Scholar
  11. 11.
    Bourret A, Chanzy H, Lazaro R (1972) Crystallite features of Valonia cellulose by electron diffraction and dark-field electron microscopy. Biopolymers 11:893–898CrossRefGoogle Scholar
  12. 12.
    Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N (1984) High resolution observations of cellulose microfibrils. Mokuzai Gakkaishi 30:98–99Google Scholar
  13. 13.
    Imai T, Putaux JL, Sugiyama J (2003) Geometric phase analysis of lattice images from algal cellulose microbrils. Polymer 44:1871–1879CrossRefGoogle Scholar
  14. 14.
    Kuga S, Brown RM Jr (1987) Lattice imaging of ramie cellulose. Polym Commun 28:311–314CrossRefGoogle Scholar
  15. 15.
    Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N (1985) Lattice images from ultrathin sections of cellulose microfibrils in the cell wall of Valonia macrophysa Kütz. Planta 166:161–168CrossRefPubMedGoogle Scholar
  16. 16.
    Helbert W, Sugiyama J, Kimura S, Itoh T (1998) High-resolution electron microscopy on ultrathin sections of cellulose microfibrils generated by glomerulocytes in Polyzoa vesiculiphora. Protoplasma 203:84–90CrossRefGoogle Scholar
  17. 17.
    Helbert W, Nishiyama Y, Okano T, Sugiyama J (1998) Molecular imaging of Halocynthia papillosa cellulose. J Struct Biol 124:42–50CrossRefPubMedGoogle Scholar
  18. 18.
    Revol JF (1982) On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohydr Polym 2:123–134CrossRefGoogle Scholar
  19. 19.
    Kimura S, Laosinchai W, Itoh T, Cui X, Linder CR, Brown RM Jr (1999) Immunogold labeling of rosette terminal cellulosesynthesizing complexes in the vascular plant Vigna angularis. Plant Cell 11:2075–2085CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Goto T, Harada H, Saiki H (1975) Cross-sectional view of microfibrils in gelatinous layer of poplar tension wood (Populus euramericana). Mokuzai Gakkaishi 21:537–542Google Scholar
  21. 21.
    Nieduszynski I, Preston RD (1970) Crystallite size in natural celluloses. Nature 225:273–274CrossRefGoogle Scholar
  22. 22.
    Hindeleh AM, Johnson DJ (1972) Crystallinity and crystallite size measurement in cellulose fibres: 1. Ramie and fortisan. Polymer 13:423–430CrossRefGoogle Scholar
  23. 23.
    Fink HP, Hofmann D, Philipp B (1995) Some aspects of lateral chain order in cellulosics from X-ray scattering. Cellulose 2:51–70Google Scholar
  24. 24.
    Heyn ANJ (1955) Small particle X-ray scattering by fibers, size and shape of microcrystallites. J Appl Phys 26:519–526CrossRefGoogle Scholar
  25. 25.
    Heyn ANJ (1966) The microcrystalline structure of cellulose in cell walls of cotton, ramie, and jute fibers as revealed by negative staining of sections. J Cell Biol 29:181–197CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Preston RD (1974) General principles of wall architecture. In: The physical biology of plant cell walls. Chapman Hall, London pp 163–191Google Scholar
  27. 27.
    Jakob HF, Fratzl P, Tschegg SE (1994) Size and arrangement of elementary cellulose fibrils in wood cells: a small-angle X-ray scattering study of Piceas abies. J Struct Biol 113:13–22CrossRefGoogle Scholar
  28. 28.
    Jakob HF, Fengel D, Tschegg SE, Fratzl P (1995) The elementary cellulose fibril in Picea abies: comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules 28:8782–8787CrossRefGoogle Scholar
  29. 29.
    Müller M, Czihak C, Vogl G, Fratzl P, Schober H, Riekel C (1998) Direct observation of microfibril arrangement in a single native cellulose fiber by microbeam small-angle X-ray scattering. Macromolecules 31:3953–3957CrossRefGoogle Scholar
  30. 30.
    Atalla RH, Gast JC, Sindorf DW, Bartuska VJ, Maciel GE (1980) 13C NMR spectra of cellulose polymorphs. J Am Chem Soc 102:3249–3251CrossRefGoogle Scholar
  31. 31.
    Earl WL, VanderHart DL (1981) Observations by high-resolution carbon-13 nuclear magnetic resonance of cellulose I related to morphology and crystal structure. Macromolecules 14:570–574CrossRefGoogle Scholar
  32. 32.
    VanderHart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state 13C NMR. Macromolecules 17:1465–1472CrossRefGoogle Scholar
  33. 33.
    Newman RH (1998) Evidence for assignment of 13C NMR signals to cellulose crystallite surfaces in wood, pulp, and isolated celluloses. Holzforschung 52:157–159CrossRefGoogle Scholar
  34. 34.
    Wickholm K, Larsson PT, Iversen T (1998) Assignment of noncrystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312:123–129CrossRefGoogle Scholar
  35. 35.
    Wada M, Heux L, Sugiyama J (2004) Polymorphism of cellulose I family: reinvestigation of cellulose IVI. Biomacromolecules 5:1385–1391CrossRefPubMedGoogle Scholar
  36. 36.
    Bergenstråhle M, Wohlert J, Larsson PT, Mazeau K, Berglund LA (2008) Dynamics of cellulose-water interfaces: NMR spinlattice relaxation times calculated from atomistic computer simulations. J Phys Chem B 112:2590–2595CrossRefPubMedGoogle Scholar
  37. 37.
    Horikawa Y, Sugiyama J (2008) Accessibility and size of Valonia cellulose microfibril studied by combined deuteration/rehydrogenation and FTIR techniques. Cellulose 15:419–424CrossRefGoogle Scholar
  38. 38.
    Horikawa Y, Clair B, Sugiyama J (2009) Varietal difference in cellulose microfibril dimensions observed by infrared spectroscopy. Cellulose 16:1–8CrossRefGoogle Scholar
  39. 39.
    Müller M, Czihak C, Schober H, Nishiyama Y, Vogl G (2000) All disordered regions of native cellulose show common lowfrequency dynamics. Macromolecules 33:1834–1840CrossRefGoogle Scholar
  40. 40.
    Reis D, Vian B, Roland JC (1994) Cellulose-glucuronoxylans and plant cell wall structure. Micron 25:171–187CrossRefGoogle Scholar
  41. 41.
    Franke WW, Ermen B (1969) Negative staining of plant slime cellulose: an examination of the elementary fibril concept. Z Naturforsch 24b:918–922Google Scholar
  42. 42.
    Lepoutre P, Robertson AA (1974) Colloidal solutions from sodium polyacrylate-polylacrylamide grafted cellulose. TAPPI 57:87–90Google Scholar
  43. 43.
    Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRefPubMedGoogle Scholar
  44. 44.
    Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491CrossRefPubMedGoogle Scholar
  45. 45.
    Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795CrossRefPubMedGoogle Scholar
  46. 46.
    Tsuji W, Nakao T, Hirai A, Horii F (1992) Properties and structure of never-dried cotton fibers. III. Cotton fibers from bolls in early stages of growth. J Appl Polym Sci 45:299–307CrossRefGoogle Scholar
  47. 47.
    Rowland SP, Roberts EJ (1972) The nature of accessible surfaces in the microstructure of cotton celluloses. J Polym Sci Polym Chem 10:2447–2461CrossRefGoogle Scholar
  48. 48.
    Nishiyama Y, Kim UJ, Kim DY, Katsumata KS, May RP, Langan P (2003) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013–1017CrossRefPubMedGoogle Scholar
  49. 49.
    Lai-Kee-Him J, Chanzy H, Müller M, Putaux JL, Imai T, Bulone V (2002) In vitro versus in vivo cellulose microfibrils from plant primary wall synthases: structural differences. J Biol Chem 277:36931–36939CrossRefPubMedGoogle Scholar
  50. 50.
    Marrinan HJ, Mann J (1956) Infrared spectra of the crystalline modifications of cellulose. J Polym Sci 21:301–311CrossRefGoogle Scholar
  51. 51.
    Honjo G, Watanabe M (1958) Examination of cellulose fibre by the low-temperature specimen method of electron diffraction and electron microscopy. Nature 181:326–328CrossRefGoogle Scholar
  52. 52.
    Sarko A, Muggli R (1974) Packing analysis of carbohydrates and polysaccharides. III. Valonia cellulose and cellulose II. Macromolecules 7:486–494CrossRefGoogle Scholar
  53. 53.
    Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRefPubMedGoogle Scholar
  54. 54.
    Sugiyama J, Vuong R, Chanzy H (1991) Electron-diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24:4168–4175CrossRefGoogle Scholar
  55. 55.
    Nishimura H, Okano T, Asano I (1981) Fine structure of wood cell walls II. Crystallite size and several peak positions of X-ray diagram of cellulose I. Mokuzai Gakkaishi 27:709–715Google Scholar
  56. 56.
    Nishimura H, Okano T, Asano I (1982) Fine structure of wood cell walls III. On the natural occurrence of cellulose IV. In red meranti. Mokuzai Gakkaishi 28:484–485Google Scholar
  57. 57.
    Gardner KH, Blackwell J (1974) The structure of native cellulose. Biopolymers 13:1975–2001CrossRefGoogle Scholar
  58. 58.
    Gardner KH, Blackwell J (1974) The hydrogen bonding in native cellulose. Biochim Biophys Acta 343:232–237CrossRefPubMedGoogle Scholar
  59. 59.
    Woodcock C, Sarko A (1980) Packing analysis of carbohydrates and polysaccharides. 11. Molecular and crystal structure of native ramie celluloses. Macromolecules 13:1183–1187CrossRefGoogle Scholar
  60. 60.
    French AD, Roughead WA, Miller DP (1987) X-Ray diffraction studies of ramie cellulose I. In: Atalla RH (ed) The structures of cellulose. ACS Symposium Series 340. American Chemical Society, pp 15–38Google Scholar
  61. 61.
    Hieta K, Kuga S, Usuda M (1984) Electron staining of reducing ends evidences a parallel-chain structure in Valonia cellulose. Biopolymers 23:1807–1810CrossRefGoogle Scholar
  62. 62.
    Chanzy H, Henrissat B (1985) Unidirectional degradation of Valonia cellulose microcrystals subjected to cellulase action. FEBS Lett 184:285–288CrossRefGoogle Scholar
  63. 63.
    Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. Proc Natl Acad Sci USA 94:9091–9095CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefPubMedGoogle Scholar
  65. 65.
    Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRefPubMedGoogle Scholar
  66. 66.
    Marrinan HJ, Mann J (1954) A study by infra-red spectroscopy of hydrogen bonding in celluloses. J Appl Chem 4:204–211CrossRefGoogle Scholar
  67. 67.
    Huggins CM, Pimentel GC (1956) Systematics of the infrared spectral properties of hydrogen bonding systems: frequency shift, half width and intensity. J Phys Chem 60:1615–1619CrossRefGoogle Scholar
  68. 68.
    Hinterstoisser B, Salmén L (1999) Two-dimensional step-scan FTIR: a tool to unravel the OH-valency-range of the spectrum of cellulose I. Cellulose 6:251–263CrossRefGoogle Scholar
  69. 69.
    Hinterstoisser B, Salmén L (2000) Application of dynamic 2D FTIR to celluloses. Vib Spectrosc 22:111–118CrossRefGoogle Scholar
  70. 70.
    Hinterstoisser B, Åkerholm M, Salmén L (2001) Effect of fiber orientation in dynamic FTIR study on native cellulose. Carbohydr Res 334:27–37CrossRefPubMedGoogle Scholar
  71. 71.
    Hinterstoisser B, Åkerholm M, Salmén L (2003) Load distribution in native celluloses. Biomacromolecules 4:1232–1237CrossRefPubMedGoogle Scholar
  72. 72.
    Nishiyama Y, Isogai A, Okano T, Müller M, Chanzy H (1999) Intracrystalline deuteration of native celluloses. Macromolecules 32:2078–2081CrossRefGoogle Scholar
  73. 73.
    Maréchal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523:183–196CrossRefGoogle Scholar
  74. 74.
    Jones DW (1958) Crystalline modifications of cellulose. Part III. The derivation and preliminary study of possible crystal structures. J Polym Sci 32:371–394CrossRefGoogle Scholar
  75. 75.
    Mazeau K (2005) Structural micro-heterogeneities of crystalline Ib-cellulose. Cellulose 12:339–349CrossRefGoogle Scholar
  76. 76.
    Langan P, Sukumar N, Nishiyama Y, Chanzy H (2005) Synchrotron X-ray structures of cellulose Iβ and regenerated cellulose II at ambient temperature and 100 K. Cellulose 12:551–562CrossRefGoogle Scholar
  77. 77.
    Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9:3133–3140CrossRefPubMedGoogle Scholar
  78. 78.
    Sakurada I, Nukushina Y, Itoh T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660CrossRefGoogle Scholar
  79. 79.
    Sakurada I, Ito T, Nakamae K (1966) Elastic moduli of the crystal lattices of polymers. J Polym Sci C 15:75–91CrossRefGoogle Scholar
  80. 80.
    Matsuo M, Sawatari C, Iwai Y, Ozaki F (1990) Effect of orientation distribution and crystallinity on the measurement by X-ray diffraction of the crystal lattice moduli of cellulose I and II. Macromolecules 23:3266–3275CrossRefGoogle Scholar
  81. 81.
    Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci Polym Phys 33:1647–1651CrossRefGoogle Scholar
  82. 82.
    Ishikawa A, Okano T, Sugiyama J (1997) Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI. Polymer 38:463–468CrossRefGoogle Scholar
  83. 83.
    Nakai T, Yamamoto H, Nakao T, Hamatake M (2006) Mechanical behavior of the crystal lattice of natural cellulose in wood under repeated uniaxial tension stress in the fiber direction. Wood Sci Technol 40:683–695CrossRefGoogle Scholar
  84. 84.
    Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061CrossRefPubMedGoogle Scholar
  85. 85.
    Eichhorn SJ, Hughes M, Snell R, Mott L (2000) Strain induced shifts in the Raman spectra of natural cellulose fibers. J Mater Sci Lett 19:721–723CrossRefGoogle Scholar
  86. 86.
    Kölln K (2004) Morphologie und mechanische Eigenschaften von Zellulosefasern: Untersuchungenmit Röntgen-und Neutronenstreuung. PhD thesis Christian-Albrechts-Universität zu KielGoogle Scholar
  87. 87.
    Nakamura K, Wada M, Kuga S, Okano T (2004) Poisson’s ratio of cellulose Iβ and cellulose II. J Polym Sci Polym Phys 42:1206–1211CrossRefGoogle Scholar
  88. 88.
    Peura M, Grotkopp I, Lemke H, Vikkula A, Laine J, Müller M, Serimaa R (2006) Negative Poisson ratio of crystalline cellulose in kraft cooked Norway spruce. Biomacromolecules 7:1521–1528CrossRefPubMedGoogle Scholar
  89. 89.
    Peura M, Kölln K, Grotkopp I, Saranpää P, Müller M, Serimaa R (2007) The effect of axial strain on crystalline cellulose in Norway spruce. Wood Sci Technol 41:565–583CrossRefGoogle Scholar
  90. 90.
    Tanaka F, Iwata T (2006) Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation. Cellulose 13:509–517CrossRefGoogle Scholar
  91. 91.
    Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13:291–307CrossRefGoogle Scholar
  92. 92.
    Tashiro K, Kobayashi M (1991) Theoretical evaluation of threedimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32:1516–1526CrossRefGoogle Scholar
  93. 93.
    Diddens I, Murphy B, Krisch M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41:9755–9759CrossRefGoogle Scholar
  94. 94.
    Takahashi M, Takenaka H (1982) X-Ray study of thermal expansion and transition of crystalline celluloses. Polym J 14:675–679CrossRefGoogle Scholar
  95. 95.
    Seitsonen S, Mikkonen I (1973) X-Ray study on the thermal expansion of cotton cellulose. Polym J 5:263–267CrossRefGoogle Scholar
  96. 96.
    Wada M, Kondo T, Okano T (2003) Thermally induced crystal transformation from cellulose Ia to Iβ. Polym J 35:155–159CrossRefGoogle Scholar
  97. 97.
    Wada M (2002) Lateral thermal expansion of cellulose Iβ and IIII polymorphs. J Polym Sci Polym Phys 40:1095–1102CrossRefGoogle Scholar
  98. 98.
    Kim DY, Nishiyama Y, Wada M, Kuga S, Okano T (2001) Thermal decomposition of cellulose crystallites in wood. Holzforschung 55:521–524CrossRefGoogle Scholar
  99. 99.
    Hori R, Wada M (2005) The thermal expansion of wood cellulose crystals. Cellulose 12:479–484CrossRefGoogle Scholar
  100. 100.
    Bergenstråhle M, Berglund LA, Mazeau K (2007) Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J Phys Chem B 111:9138–9145CrossRefPubMedGoogle Scholar
  101. 101.
    Nogi M, Ifuku S, Abe K, Handa K, Nakagaito AN, Yano H (2006) Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites. Appl Phys Lett 88:133124–133124.3CrossRefGoogle Scholar

Copyright information

© The Japan Wood Research Society 2009

Authors and Affiliations

  1. 1.CERMAV-CNRSGrenoble cedex 9France

Personalised recommendations