Journal of Wood Science

, Volume 53, Issue 6, pp 533–540 | Cite as

Comparative study on the chemical composition of lipophilic fractions from three wood tissues of Eucalyptus species by gas chromatography-mass spectrometry analysis

  • Flaviano Oliveira Silvério
  • Luiz Cláudio Almeida BarbosaEmail author
  • Armando J. D. Silvestre
  • Dorila Piló-Veloso
  • José Lívio Gomide


Abstract The chemical compositions of lipophilic fractions from Eucalyptus urograndis and Eucalyptus urophylla cultivated in Brazil and Eucalyptus camaldulensis from Mexico were determined by gas chromatography-mass spectrometry (GC-MS) before and after alkaline hydrolysis followed by derivatization. In all fractions, fatty acids (including small amounts of α-and ω-hydroxy fatty acids) and sterols were the most abundant components followed by smaller amounts of long-chain aliphatic alcohols, phenolic acids, and hydrocarbons. The presence of steroid esters and triacylglycerols in all three species was indirectly confirmed by the increased amount of fatty acids and sterols (manly β-sitosterol) in the hydrolyzed fractions compared with the corresponding nonhydrolyzed fractions. The amount of liphophilic compounds (mainly fatty acids and sterols) identified in hydrolyzed fractions of E. urograndis, E. camaldulensis, and E. urophylla corresponded to 1921, 1915, and 634 mg kg−1 of dry matter, respectively. The lower abundance of fatty acids and sterols in the fractions from E. urophylla indicates that problems related to pitch formation will be less severe for this species than for the other two.

Key words

Lipophilic extract Pitch Eucalyptus camaldulensis Eucalyptus urograndis Eucalyptus urophylla 


  1. 1.
    Hillman DC (2002) Single species pulping: the worlds preferred market pulps. Solutions, November 27Google Scholar
  2. 2.
    Sjöström E, Alen R (1998) Analytical methods in wood chemistry, pulping, and papermaking. Springer, Berlin Heidelberg New York, pp 1–316Google Scholar
  3. 3.
    Gullichsen J, Paulapuro H (2000) Forest products chemistry. Book 3. TAPPI, Finland pp 34–55Google Scholar
  4. 4.
    Silvestre AJD, Neto CP, Freire CSR (2005) Componentes lipofílicos da madeira de Eucalyptus globulus: comportamento durante a produção de pasta de papel. O Papel/Aveiro 1:5–16Google Scholar
  5. 5.
    Neto CP, Evtuguin DV, Pinto PC (2005) Componentes macromoleculares das madeiras de Eucalyptus e de outras folhosas: na aptidão ao cozimento e branqueamento. O Papel/Avieiro 1:17–26Google Scholar
  6. 6.
    Swan B, Akerblom IS (1967) Wood extractives from Eucalyptus globulus Labill. Sven Papperstidn 70:239–244Google Scholar
  7. 7.
    Santos GG, Alves JCN, Rodilla JML, Duarte AP, Lithgow AM, Urones JG (1997) Terpenoids and other constituents of Eucalyptus globulus. Phytochemistry 44:1309–1312CrossRefGoogle Scholar
  8. 8.
    Wallis AFA, Wearne RH, Wright JP (1997) Analysis of resin in eucalypt woods and pulps. Proceedings of the 51st Appita Annual General Conference, Melbourne 1:45–50Google Scholar
  9. 9.
    Wallis AFA, Wearne RH, Wright JP (1999) Analysis of resin in eucalypt woods and pulps. Appita J 52:295–299Google Scholar
  10. 10.
    Gutiérrez A, Del Río JC, Gonzáles-Vila FJ, Martin EF (1998) Analysis of lipophilic extractives from wood and pitch deposits by solid-phase extraction and gas chromatography. J Chromatogr A 823:449–455CrossRefGoogle Scholar
  11. 11.
    Gutiérrez A, Del Río JC, Gonzáles-Vila FJ, Martin EF (1999) Chemical composition of lipophilic extractives from Eucalyptus globulus Labill wood. Holzforschung 53:481–486CrossRefGoogle Scholar
  12. 12.
    Gutiérrez A, Del Río JC (2001) Gas chromatography/mass spectrometry demonstration of steryl glycosides in eucalypt wood, kraft pulp and process liquids. Rapid Commun Mass Spectrom 15:2515–2520CrossRefPubMedGoogle Scholar
  13. 13.
    Freire CSR, Silvestre AJD, Neto CP (2002) Identification of new hydroxy fatty acids and ferulic acid ester in the wood of Eucalyptus globulus. Holzforschung 56:143–149Google Scholar
  14. 14.
    Freire CSR, Silvestre AJD, Neto CP, Domingues P, Silva AMS (2004) New glycosides in the wood and bark of Eucalyptus and Kraft pulps. Holzforschung 58:501–503CrossRefGoogle Scholar
  15. 15.
    Sun RC, Tomkinson J (2003) Comparative study of organic solvent and water-soluble lipophilic extractives from wheat straw I: yield and chemical composition. J Wood Sci 49:47–52CrossRefGoogle Scholar
  16. 16.
    Manji A, Salgar S, Constant J, Silva DJS, Almeida JM (2005) Uma nova alternativa para eliminar o talco e reduzir pitch e extrativos na produção de celulose. O Papel maio 82–87Google Scholar
  17. 17.
    Freire CSR, Silvestre AJD, Pereira CCL, Pascoal Neto C, Cavaleiro JAS (2002) New lipophilic components of pitch deposits from an Eucalyptus globulus ECF bleached kraft pulp mill. J Wood Chem Technol 22:55–66CrossRefGoogle Scholar
  18. 18.
    Freire CSR, Silvestre AJD, Neto CP (2005) Lipophilic extractives in Eucalyptus globulus kraft pulps. Behaviour during ECF bleaching. J Wood Chem Technol 25:67–80CrossRefGoogle Scholar
  19. 19.
    Freire CSR, Pinto PCR, Santiago AS, Silvestre AJD, Evtuguin DV, Neto CP (2006) Comparative study of lipophilic extractives of hardwoods and corresponding ECF bleached Kraft pulps. BioRes 1:3–17Google Scholar
  20. 20.
    Neto CP, Silvestre AJD, Evtuguin DV, Freire CSR, Pinto PCR, Santiago AS (2004) Bulk and surface composition of ECF bleached hardwood kraft pulp fibres. Nord Pulp Paper Res J 19:513–520CrossRefGoogle Scholar
  21. 21.
    Gonçalves FMA, Rezende GDSP, Bertolucci FLG, Ramalho MAP (2001) Progresso genético por meio da seleção de clones de eucalipto em plantios comerciais. R Árvore 25:295–301Google Scholar
  22. 22.
    Caixeta RP, Carvalho D, Rosado SCS, Trugilho (2003) Variações genéticas em populações de Eucalyptus ssp. Detectadas por meio de marcadores moleculares. R Árvore 27:357–363CrossRefGoogle Scholar
  23. 23.
    Caixeta RP, Trugilho PF, Rosado SCS, Lima JT (2003) Propriedades e classificação da madeira aplicadas à seleção de genótipos de Eucalyptus. R Árvore 27:43–51CrossRefGoogle Scholar
  24. 24.
    Cruz MP, Barbosa LCA, Maltha CRA, Gomide JL, Milanes AF (2006) Caracterização química do pitch em indústria de celulose e papel de Eucalyptus. Quím Nova 29:1–8CrossRefGoogle Scholar
  25. 25.
    Barbosa LCA, Maltha CRA, Cruz, MP (2005) Composição química de extrativos lipofílicos e polares de madeira de Eucalyptus grandis. Sci Eng J 14:13–19Google Scholar
  26. 26.
    Barbosa LCA, Maltha CRA, Cruz MP, Belinelo VJ, Milanez AF (2005) O uso da espectroscopia no infravermelho na caracterização de depósitos de pitch e outros resíduos na indústria de celulose e papel. O Papel 10:72–82Google Scholar
  27. 27.
    Anonymous (1997) Tappi standard T 264 Cm-97. Preparation of wood for chemical analysis. TAPPI, AtlantaGoogle Scholar
  28. 28.
    Del Río JC, Gutiérrez A, Gonzáles-Vila EC, Martín F, Romero J (1998) Characterization of organic deposits produced in kraft pulping of Eucalyptus globulus wood. J Chromatogr A 823: 457–465CrossRefGoogle Scholar
  29. 29.
    Silvério FO, Barbosa LCA, Gomide JL, Reis FP, Pilo-Veloso D (2006) Metodologia de extração e determinação do teor de extrativos em madeiras de eucalipto. R Arvore 62:1009–1016CrossRefGoogle Scholar
  30. 30.
    Budzikiewicz H, Djerassi C, Williams DH (1967) Mass spectrometry of organic compounds. Holden-Day, LondonGoogle Scholar
  31. 31.
    Draffan GH, Stillwell RN, Mccloskey JA (1968) Electron impact-induced rearrangement of trimethylsilyl groups in long chain compounds. Org Mass Spectrom 1:669–685CrossRefGoogle Scholar
  32. 32.
    Petersson G (1972) Mass spectrometry of hydroxyl dicarboxylic acids as trimethylsilyl derivatives. Rearrangement fragmentations. Org Mass Spectrom 6:565–576CrossRefGoogle Scholar
  33. 33.
    McLafferty FW, Turecek F (1992) Interpretation of mass spectra, 4th edn. University Science, Sausalito, CAGoogle Scholar
  34. 34.
    Silvestre AJD, Pereira CCL, Neto CP, Evtuguin DV, Duarte AC, Cavaleiro JAS, Furtado FP (1999) Chemical composition of pitch deposits from an ECF Eucalyptus globulus bleached kraft pulp mill: its relationship with wood extractives and additives in process streams. Appita J 52:375–382Google Scholar
  35. 35.
    Diekman J, Djerassi C (1967) Mass spectrometry in structural and stereochemical problems. CXXV. Mass spectrometry of some steroid trimethylsilyl ethers. J Org Chem 32:1005–1012CrossRefPubMedGoogle Scholar
  36. 36.
    Gustafsson JA, Ryhage R, Sjövall J (1969) Migration of the trimethylsilyl group upon electron impact in steroids. J Am Chem Soc 91:1236–1234CrossRefGoogle Scholar
  37. 37.
    Brooks CJW (1979) Some aspects of mass spectrometry in research on steroids. Phil Trans Roy Soc London A 293:53–67CrossRefGoogle Scholar
  38. 38.
    Sharkey AG, Friedel RA, Langer SH (1957) Mass spectra of trimethylsilyl derivatives. Anal Chem 29:770–776CrossRefGoogle Scholar
  39. 39.
    Morita H (1972) Identification of phenolic acids by gas chromatography-mass spectrometry. J Chromatogr 71:149–153CrossRefGoogle Scholar
  40. 40.
    Krauss D, Mainx HG, Tauscher B, Bischof P (1985) Fragmentation of trimethylsilyl derivatives of 2-alkoxyphenols: a further violation of the “even-electron role”. Org Mass Spectrum 20:614–617CrossRefGoogle Scholar

Copyright information

© The Japan Wood Research Society 2007

Authors and Affiliations

  • Flaviano Oliveira Silvério
    • 1
    • 2
  • Luiz Cláudio Almeida Barbosa
    • 1
    Email author
  • Armando J. D. Silvestre
    • 3
  • Dorila Piló-Veloso
    • 2
  • José Lívio Gomide
    • 4
  1. 1.Department of ChemistryFederal University of ViçosaViçosaBrazil
  2. 2.Department of ChemistryFederal University of Minas GeraisBelo HorizonteBrazil
  3. 3.CICECO and Department of ChemistryUniversity of AveiroAveiroPortugal
  4. 4.Department of Forest EngineeringFederal University of ViçosaViçosaBrazil

Personalised recommendations