Journal of Wood Science

, Volume 53, Issue 4, pp 273–284 | Cite as

Biosynthesis of lignans and norlignans

  • Shiro Suzuki
  • Toshiaki Umezawa
Review Article


Lignans and norlignans constitute abundant classes of phenylpropanoids. Biosynthesis of these compounds has received widespread interest, mainly because they have various clinically important biological activities. In addition, lignans and norlignans are often biosynthesized and deposited in significant amounts in the heartwood region of trees as a metabolic event of heartwood formation, probably preventing heart rot by heart-rot fungi. Furthermore, biosynthetic reactions of lignans and norlignans involve unique stereochemical properties that are of great interest in terms of bioorganic chemistry and are expected to provide a model for biomimetic chemistry and its application. We outline the recent advances in the study of lignan and norlignan biosynthesis.

Key words

Lignan Norlignan Phenylpropanoid Heartwood formation Biosynthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Umezawa T (2003) Diversity in lignan biosynthesis. Phytochem Rev 2:371–390CrossRefGoogle Scholar
  2. 2.
    Moss GP (2000) Nomenclature of lignans and neolignans (IUPAC Recommendations 2000). Pure Appl Chem 72:1493–1523CrossRefGoogle Scholar
  3. 3.
    Umezawa T (2003) Phylogenetic distribution of lignan producing plants. Wood Res 90:27–110Google Scholar
  4. 4.
    Suzuki S, Umezawa T, Shimada M (2001) Norlignan biosynthesis in Asparagus officinalis L.: the norlignan originates from two nonidentical phenylpropane units. J Chem Soc Perkin Trans 1:3252–3257Google Scholar
  5. 5.
    Umezawa T (2005) Biosynthesis of lignans, lignins, and norlignans. Kagaku to Seibutsu 43:461–467CrossRefGoogle Scholar
  6. 6.
    Sakakibara N, Nakatsubo T, Suzuki S, Shibata D, Shimada M, Umezawa T (2007) Metabolic analysis of the cinnamate/monolignol pathway in Carthamus tinctorius seeds by a stable-isotope-dilution method. Org Biomol Chem 5:802–815CrossRefPubMedGoogle Scholar
  7. 7.
    Chiang VL (2006) Monolignol biosynthesis and genetic engineering of lignin in trees, a review. Environ Chem Lett 4:143–146CrossRefGoogle Scholar
  8. 8.
    Umezawa T, Okunishi T, Shimada M (1997) Stereochemical diversity in lignan biosynthesis. Wood Res 84:62–75Google Scholar
  9. 9.
    Akiyama T, Magara K, Matsumoto Y, Meshitsuka G, Ishizu A, Ludquist K (2000) Proof of the presence of racemic forms of arylglycerol-β-aryl ether structure in lignin: studies on the stereo structure of lignin by ozonation. J Wood Sci 46:414–415CrossRefGoogle Scholar
  10. 10.
    Paré PW, Wang H-B, Davin LB, Lewis NG (1994) (+)-Pinoresinol synthase: a stereoselective oxidase catalysing 8,8′-lignan formation in Forsythia intermedia. Tetrahedron Lett 35:4731–4734CrossRefGoogle Scholar
  11. 11.
    Davin LB, Wang H-B, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, Lewis NG (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275:362–366CrossRefPubMedGoogle Scholar
  12. 12.
    Halls SC, Lewis NG (2002) Secondary and quaternary structures of the (+)-pinoresinol-forming dirigent protein. Biochemistry 41:9455–9461CrossRefPubMedGoogle Scholar
  13. 13.
    Halls SC, Davin LB, Kramer DM, Lewis NG (2004) Kinetic study of coniferyl alcohol radical binding to the (+)-pinoresinol forming dirigent protein. Biochemistry 43:2587–2595CrossRefPubMedGoogle Scholar
  14. 14.
    Gang DR, Costa MA, Fujita M, Dinkova-Kostova AT, Wang HB, Burlat V, Martin W, Sarkanen S, Davin LB, Lewis NG (1999) Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis. Chem Biol 6:143–151CrossRefPubMedGoogle Scholar
  15. 15.
    Davin LB, Lewis NG (2000) Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiol 123:453–461CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kim MK, Jeon J-H, Fujita M, Davin LB, Lewis NG (2002) The western red cedar (Thuja plicata) 8-8′ DIRIGENT family displays diverse expression patterns and conserved monolignol coupling specificity. Plant Mol Biol 49:199–214CrossRefPubMedGoogle Scholar
  17. 17.
    Ralph S, Park J-Y, Bohlmann J, Mansfield SD (2006) Dirigent proteins in conifer defense: gene discovery, phylogeny, and differential wound-and insect-induced expression of a family of DIR and DIR-like genes in spruce (Picea spp.). Plant Mol Biol 60:21–40CrossRefPubMedGoogle Scholar
  18. 18.
    Wang Y, Nowak G, Culley D, Hadwiger LA, Fristensky B (1999) Constitutive expression of pea defense gene DRR206 confers resistance to blackleg (Leptosphsrtis maculans) disease in transgenic canola (Brassica napus). Mol Plant Microbe Interact 12:410–418CrossRefGoogle Scholar
  19. 19.
    Burlat V, Kuwan M, Davin LB, Lewis NG (2001) Dirigent proteins and dirigent sites in lignifying tissues. Phytochemistry 57:883–897CrossRefPubMedGoogle Scholar
  20. 20.
    Takabe K, Fujita M, Harada H, Saiki H (1981) Lignification process of Japanese black pine (Pinus thunbergii Parl.) tracheids. Mokuzai Gakkaishi 12:813–820Google Scholar
  21. 21.
    Terashima N, Fukushima K, Takabe K (1986) Heterogeneity in formation of lignin VIII. An autoradiographic study on the formation of guaiacyl and syringyl lignin in Magnolia kobus DC. Holzforschung 40:101–105Google Scholar
  22. 22.
    Fukushima K, Terashima N (1991) Heterogeneity in formation of lignin XIV. Formation and structure of lignin in differentiating xylem of Ginkgo biloba. Holzforschung 45:87–94CrossRefGoogle Scholar
  23. 23.
    Davin LB, Lewis NG (2005) Lignin primary structures and dirigent sites. Curr Opin Biotech 16:407–415CrossRefPubMedGoogle Scholar
  24. 24.
    Hatfield R, Vermerris W (2001) Lignin formation in plants. The dilemma of linkage specificity. Plant Physiol 126:1351–1357CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546CrossRefPubMedGoogle Scholar
  26. 26.
    Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Chirstensen JH, Boerjan W (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem Rev 3:29–60CrossRefGoogle Scholar
  27. 27.
    Morreel K, Ralph J, Lu F, Goeminne G, Busson R, Herdewijn P, Goeman JL, Van der Eycken J, Boerjan W, Messens E (2004) Phenolic profiling of caffeic acid O-methyltransferase-deficient poplar reveals novel benzodioxane oligolignols. Plant Physiol 136:4023–4036CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Umezawa T, Davin LB, Lewis NG (1990) Formation of the lignan, (−)-secoisolariciresinol, by cell free extracts of Forsythia intermedia. Biochem Biophys Res Commun 171:1008–1014CrossRefPubMedGoogle Scholar
  29. 29.
    Katayama T, Davin LB, Lewis NG (1992) An extraordinary accumulation of (−)-pinoresinol in cell-free extracts of Forsythia intermedia: evidence for enantiospecific reduction of (+)-pinoresinol. Phytochemistry 31:3875–3881CrossRefPubMedGoogle Scholar
  30. 30.
    Katayama T, Davin LB, Chu A, Lewis NG (1993) Novel benzylic ether reductions in lignan biogenesis in Forsythia intermedia. Phytochemistry 33:581–591CrossRefGoogle Scholar
  31. 31.
    Umezawa T, Kuroda H, Isohata T, Higuchi T, Shimada M (1994) Enantioselective lignan synthesis by cell-free extracts of Forsythia koreana. Biosci Biotech Biochem 58:230–234CrossRefGoogle Scholar
  32. 32.
    Umezawa T, Shimada M (1996) Formation of the lignan (+)-secoisolariciresinol by cell-free extracts of Arctium lappa. Biosci Biotech Biochem 60:736–737CrossRefGoogle Scholar
  33. 33.
    Suzuki S, Umezawa T, Shimada M (1998) Stereochemical difference in secoisolariciresinol formation between cell-free extracts from petioles and from ripening seeds of Arctium lappa L. Biosci Biotech Biochem 62:1468–1470CrossRefGoogle Scholar
  34. 34.
    Suzuki S, Umezawa T, Shimada M (2002) Stereochemical diversity in lignan biosynthesis of Arctium lappa L. Biosci Biotech Biochem 66:1262–1269CrossRefGoogle Scholar
  35. 35.
    Katayama T, Masaoka T, Yamada H (1997) Biosynthesis and stereochemistry of lignans in Zanthoxylum ailanthoides I. (+)-Lariciresinol formation by enzymatic reduction of (±)-pinoresinols. Mokuzai Gakkaishi 43:580–588Google Scholar
  36. 36.
    Suzuki S, Sakakibara N, Umezawa T, Shimada M (2002) Survey and enzymatic formation of lignans of Anthriscus sylvestris. J Wood Sci 48:536–541CrossRefGoogle Scholar
  37. 37.
    Xia Z-Q, Costa MA, Proctor J, Davin LB, Lewis NG (2000) Dirigent-mediated podophyllotoxin biosynthesis in Linum flavum and Podophyllum peltatum. Phytochemistry 55:537–549CrossRefPubMedGoogle Scholar
  38. 38.
    von Heimendahl CBI, Schäfer KM, Eklund P, Sjöholm R, Schmidt TJ, Fuss E (2005) Pinoresinol-lariciresinol reductases with different stereospecificity from Linum album and Linum usitatissimum. Phytochemistry 66:1254–1263CrossRefGoogle Scholar
  39. 39.
    Okunishi T, Umezawa T, Shimada M (2001) Isolation and enzymatic formation of lignans of Daphne genkwa and Daphne odora. J Wood Sci 47:383–388CrossRefGoogle Scholar
  40. 40.
    Chu A, Dinkova A, Davin LB, Bedgar DL, Lewis NG (1993) Stereospecificity of (+)-pinoresinol and (+)-lariciresinol reductases from Forsythia intermedia. J Biol Chem 268:27026–27033PubMedGoogle Scholar
  41. 41.
    Dinkova-Kostova AT, Gang DR, Davin LB, Bedgar DL, Chu A, Lewis NG (1996) (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia. J Biol Chem 271:29473–29482CrossRefPubMedGoogle Scholar
  42. 42.
    Fujita M, Gang DR, Davin LB, Lewis NG (1999) Recombinant pinoresinol-lariciresinol reductases from western red cedar (Thuja plicata) catalyze opposite enantiospecific conversions. J Biol Chem 274:618–627CrossRefPubMedGoogle Scholar
  43. 43.
    Min T, Kasahara H, Bedgar DL, Youn B, Lawrence PK, Gang DR, Halls SC, Park HJ, Hilsenbeck JL, Davin LB, Lewis NG, Kang C (2003) Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases. J Biol Chem 278:50714–50723CrossRefPubMedGoogle Scholar
  44. 44.
    Umezawa T, Davin LB, Yamamoto E, Kingston DGI, Lewis NG (1990) Lignan biosynthesis in Forsythia species. J Chem Soc Chem Commun 1405–1408Google Scholar
  45. 45.
    Umezawa T, Davin LB, Lewis NG (1991) Formation of lignans (−)-secoisolariciresinol and (−)-matairesinol with Forsythia intermedia cell-free extracts. J Biol Chem 266:10210–10217PubMedGoogle Scholar
  46. 46.
    Okunishi T, Sakakibara N, Suzuki S, Umezawa T, Shimada M (2004) Stereochemistry of matairesinol formation by Daphne secoisolariciresinol dehydrogenase. J Wood Sci 50:77–81CrossRefGoogle Scholar
  47. 47.
    Umezawa T (2001) Biosynthesis of lignans and related phenylpropanoid compounds. Regul Plant Growth Dev 36:57–67Google Scholar
  48. 48.
    Xia Z-Q, Costa MA, Pélissier HC, Davin LB, Lewis NG (2001) Secoisolariciresinol dehydrogenase purification, cloning, and functional expression. J Biol Chem 276:12614–12623CrossRefPubMedGoogle Scholar
  49. 49.
    Youn B, Moinuddin SGA, Davin LB, Lewis NG (2005) Cyrstal structures of apo-form and binary/ternary complexes of Podophyllum secoisolariciresinol dehydrogenase, an enzyme involved in formation of health-protecting and plant defense lignans. J Biol Chem 280:12917–12926CrossRefPubMedGoogle Scholar
  50. 50.
    Moinuddin SGA, Youn B, Bedgar DL, Costa MA, Helms GL, Kang CH, Davin LB, Lewis NG (2006) Secoisolariciresinol dehydrogenase: mode of catalysis and stereospecificity of hydride transfer in Podophyllum peltatum. Org Biol Chem 4:808–816CrossRefGoogle Scholar
  51. 51.
    Dewick PM (1989) Biosynthesis of lignans. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 5. Structure elucidation (part B). Elsevier, Amsterdam, pp 459–503Google Scholar
  52. 52.
    Broomhead AJ, Rahman MMA, Dewick PM, Jackson DE, Lucas JA (1991) Matairesinol as precursor of Podophyllum lignans. Phytochemistry 30:1489–1492CrossRefGoogle Scholar
  53. 53.
    Sakakibara N, Suzuki S, Umezawa T, Shimada M (2003) Biosynthesis of yatein in Anthriscus sylvestris. Org Biomol Chem 1:2474–2485CrossRefPubMedGoogle Scholar
  54. 54.
    Petersen M, Alfermann AW (2001) The production of cytotoxic lignans by plant cell cultures. Appl Microbiol Biotechnol 55:135–142CrossRefPubMedGoogle Scholar
  55. 55.
    Kuhlmann S, Kranz K, Lücking B, Alfermann AW, Petersen M (2002) Aspects of cytotoxic lignan biosynthesis in suspension cultures of Linum nodiflorum. Phytochem Rev 1:37–43CrossRefGoogle Scholar
  56. 56.
    Molog GA, Empt U, Kuhlmann S, van Uden W, Pras N, Alfermann AW, Petersen M (2001) Deoxypodophyllotoxin 6-hydroxylase, a cytochrome P450 monooxygenase from cell cultures of Linum flavum involved in the biosynthesis of cytotoxic lignans. Planta 214:288–294CrossRefPubMedGoogle Scholar
  57. 57.
    Kranz K, Petersen M (2003) β-Peltatin 6-O-methyltransferase from suspension cultures of Linum nodiflorum. Phytochemistry 64:453–458CrossRefPubMedGoogle Scholar
  58. 58.
    Umezawa T, Li L, Suzuki S, Sakakibara N, Nakatsubo T, Chiang VL (2004) A novel O-methyltransferase catalyzing a regioselective methylation of lignan. Proceedings of the 49th Lignin Symposium, Tsukuba, Japan, pp 33–36Google Scholar
  59. 59.
    Puri SC, Nazir A, Chawla R, Arora R, Siyaz-ul-Hasan S, Amna T, Ahmed B, Verma V, Singh S, Sagar R, Sharma A, Kumar R, Sharma RK, Qazi GN (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122:494–510CrossRefPubMedGoogle Scholar
  60. 60.
    Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124CrossRefPubMedGoogle Scholar
  61. 61.
    Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216CrossRefPubMedGoogle Scholar
  62. 62.
    Arroo RRJ, Alfermann AW, Medarde M, Petersen M, Pras N, Woolley JG (2002) Plant cell factories as a source for anti-cancer lignans. Phytochem Rev 1:27–35CrossRefGoogle Scholar
  63. 63.
    Fuss E (2003) Lignans in plant cell and organ cultures: an overview. Phytochem Rev 2:307–320CrossRefGoogle Scholar
  64. 64.
    Kato MJ, Chu A, Davin LB, Lewis NG (1998) Biosynthesis of antioxidant lignans in Sesamum indicum seeds. Phytochemistry 47:583–591CrossRefGoogle Scholar
  65. 65.
    Jiao Y, Davin LB, Lewis NG (1998) Furanofuran lignan metabolism as a function of seed maturation in Sesamum indicum: methylenedioxy bridge formation. Phytochemistry 49:387–394CrossRefGoogle Scholar
  66. 66.
    Ono E, Nakai M, Fukui Y, Tominori N, Fukuchi-Mizunati M, Saito M, Satake H, Tanaka T, Katsuta M, Umezawa T, Tanaka Y (2006) Formation of two methylenedioxy bridges by a Sesamum CYP81Q protein yielding a furofuran lignan, (+)-sesamin. Proc Natl Acad Sci USA 103:10116–10121CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Gottlieb OR (1972) Chemosystematics of the Lauraceae. Phytochemistry 11:1537–1570CrossRefGoogle Scholar
  68. 68.
    Moinuddin SGA, Hishiyama S, Cho M-H, Davin LB, Lewis NG (2003) Synthesis and chiral HPLC analysis of the dibenzyltetrahydrofuran lignans, larreatricins, 8′-epi-larreatricins, 3,3′-didemethoxyverrucosins and meso-3,3′-didemethoxynectandrin B in the creosote bush (Larrea tridentata): evidence for regiospecific control of coupling. Org Biomol Chem 1:2307–2313CrossRefPubMedGoogle Scholar
  69. 69.
    Lopes NP, Yoshida M, Kato MJ (2004) Biosynthesis of tetrahydrofuran lignans in Virola surinamensis. Brazil J Pharm Sci 40:53–57Google Scholar
  70. 70.
    Koeduka T, Fridman E, Gang DR, Vassão DG, Jackson RL, Kish CM, Orlova I, Spassova SM, Lewis NG, Noel JP, Baiga TJ, Dudareva N, Pichersky E (2006) Eugenol and isoeugenol, characteristic aromatic constituents of spices are biosynthesized via reduction of a coniferyl alcohol ester. Proc Natl Acad Sci USA 103:10128–10133CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Vassão DG, Gang DR, Koeduka T, Jackson B, Pichersky E, Davin LB, Lewis NG (2006) Chavicol formation in sweet basil (Ocimum basilicum): cleavage of an esterified C9 hydroxyl group with NAD(P)H-dependent reduction. Org Biomol Chem 4:2733–2744CrossRefPubMedGoogle Scholar
  72. 72.
    Castro MA, Gordaliza M, Miguel del Corral J, San Fericiano A (1996) The distribution of lignanoids in the order Coniferae. Phytochemistry 41:995–1011CrossRefGoogle Scholar
  73. 73.
    Erdtman H, Harmatha J (1979) Phenolic and terpenoid heartwood constituents of Libocedrus yateensis. Phytochemistry 18:1495–1500CrossRefGoogle Scholar
  74. 74.
    Begley MJ, Davies RV, Henley-Smith P, Whiting DA (1973) Constitution of sequirin-D (Sequoia sempervirens), a novel dihydronaphtalene norlignan. J Chem Soc Chem Commun 649–650Google Scholar
  75. 75.
    Begley MJ, Davies RV, Henley-Smith P, Whiting DA (1978) The constitution of (1R)-sequirin-D (Sequoia sempervirens), a biogenetically novel norlignan, by direct X-ray analysis. J Chem Soc Perkin Trans 1 750–754CrossRefGoogle Scholar
  76. 76.
    Plieninger H, Schwarz B, Jaggy H, Huber-Patz U, Rodewald H, Irngartinger H, Weinges K (1986) Natural products from medicinal plants, XXIV-isolation, structure determination and synthesis of (Z,Z)-4-4′-(1,4-pentadiene-1,5-diyl) diphenol, an unusual natural product from the leaves of the Ginkgo tree (Ginkgo biloba L.). Liebigs Ann Chem 1772–1778Google Scholar
  77. 77.
    Daniels P, Erdtman H, Nishimura K, Norin T (1972) Athrotaxin, a C17-phenolic constituent from Athrotaxis selaginoides Don. J Chem Soc Chem Commun 246–247Google Scholar
  78. 78.
    Enoki A, Takahama S, Kitao K (1977) The extractives of Metasekoia, Metasequoia glyptostroboides Hu et Cheng. I. Mokuzai Gakkaishi 23:579–586Google Scholar
  79. 79.
    Enoki A, Takahama S, Kitao K (1977) The extractives of Metasekoia, Metasequoia glyptostroboides Hu et Cheng. II. Mokuzai Gakkaishi 23:587–593Google Scholar
  80. 80.
    Tsui Y, Brown GD (1996) (+)-Nyasol from Asparagus cochinchinensis. Phytochemistry 43:1413–1415CrossRefGoogle Scholar
  81. 81.
    Nikaido T, Ohmoto T, Noguchi H, Kinoshita T, Saitoh H, Sankawa U (1981) Inhibitors of cyclic AMP phosphodiesterase in medicinal plants. Planta Medica 43:18–23CrossRefPubMedGoogle Scholar
  82. 82.
    Terada K, Kamisako W (1999) 1H-NMR and mass spectral study of a D-enriched acetylenic norlignan, asparenyol, from cultured cells of Asparagus officinalis. Biol Pharm Bull 22:561–566CrossRefPubMedGoogle Scholar
  83. 83.
    Abegaz BM, Ngadjui BT, Bezabih M, Mdee LK (1999) Novel natural products from marketed plants of eastern and southern Africa. Pure Appl Chem 71:919–926CrossRefGoogle Scholar
  84. 84.
    Kinjo J, Furusawa J, Nohara T (1985) Two novel aromatic glycosides, pueroside-A and-B, from Puerariae radix. Tetrahedron Lett 26:6101–6102CrossRefGoogle Scholar
  85. 85.
    Shirataki Y, Tagaya Y, Yokoe I, Komatsu M (1987) Sophoraside A, a new aromatic glycoside from the roots of Sophora japonica. Chem Pharm Bull 35:1637–1640CrossRefGoogle Scholar
  86. 86.
    Nohara T, Kinjo J, Furusama J, Sakai Y, Inoue M, Shirataki Y, Ishibashi Y, Yokoe I, Komatsu M (1993) But-2-enolides from Pueraria lobata and revised structures of puerosides A, B and sophoroside A. Phytochemistry 31:1207–1210CrossRefGoogle Scholar
  87. 87.
    Kogiso S, Hosozawa S, Wada K, Munakata K (1974) Daphneolone in roots of Daphne odora. Phytochemistry 13:2332–2334CrossRefGoogle Scholar
  88. 88.
    Beracierta AP, Whiting DA (1978) Stereoselective total syntheses of the (±)-di-O-methyl ethers of agatharesinol, sequirin-A, and hinokiresinol, and of (±)-tri-O-methylsequrin-E, characteristic norlignans of Coniferae. J Chem Soc Perkin Trans 1 1257–1263CrossRefGoogle Scholar
  89. 89.
    Birch AJ, Liepa AJ (1978) Biosynthesis. In: Rao CBS (ed) Chemistry of lignans. Andhra University Press, Andhra Pradesh, pp 307–327Google Scholar
  90. 90.
    Suzuki S, Nakatsubo T, Umezawa T, Shimada M (2002) First in vitro norlignan formation with Asparagus officinalis enzyme preparation. Chem Commun 1088–1089Google Scholar
  91. 91.
    Suzuki S, Yamamura M, Shimada M, Umezawa T (2004) A heart-wood norlignan, (E)-hinokiresinol, is formed from 4-coumaryl 4-coumarate by a Cryptomeria japonica enzyme preparation. Chem Commun 2838–2839Google Scholar
  92. 92.
    Zhang YM, Tan NH, He M, Lu Y, Shang SQ, Zheng QT (2004) Sequosempervirin A, a novel spirocyclic compounds from Sequoia sempervirens. Tetrahedron Lett 45:4319–4321CrossRefGoogle Scholar
  93. 93.
    Davin LB, Lewis NG (2005) Dirigent phenoxy radical coupling: advances and challenges. Curr Opin Biotechnol 16:398–406CrossRefPubMedGoogle Scholar
  94. 94.
    Imai T, Nomura M, Fukushima K (2006) Evidence for involvement of the phenylpropanoid pathway in the biosynthesis of the norlignan agatharesinol. J Plant Physiol 163:483–487CrossRefPubMedGoogle Scholar
  95. 95.
    Imai T, Nomura M, Matsushita Y, Fukushima K (2006) Hinokiresinol is not a precursor of agatharesinol in the norlignan biosynthetic pathway in Japanese cedar. J Plant Physiol 163:1221–1228CrossRefPubMedGoogle Scholar
  96. 96.
    Imai T, Takino M, Itoh, E, Fukushima K (2006) In vitro formation of Sequirin-C by a microsomal fraction prepared from Cryptomeria japonica transition wood. Abstract of the 56th Annual Meeting of the Japan Wood Research Society, Akita, Japan, p 70Google Scholar
  97. 97.
    Yoshida K, Nishiguchi M, Futamura N, Nanjo T (2006) Expressed sequence tags from Cryptomeria japonica sapwood during the drying process. Tree Physiol 27:1–9CrossRefGoogle Scholar

Copyright information

© The Japan Wood Research Society 2007

Authors and Affiliations

  1. 1.Institute of Sustainability ScienceKyoto UniversityUji, KyotoJapan
  2. 2.Research Institute for Sustainable HumanosphereKyoto UniversityUji, KyotoJapan

Personalised recommendations