Journal of Wood Science

, Volume 51, Issue 5, pp 514–519 | Cite as

Termite repellent sesquiterpenoids from Callitris glaucophylla heartwood

  • Yasutaka Watanabe
  • Rie Mihara
  • Tohru Mitsunaga
  • Tsuyoshi Yoshimura


Fractions of methanol and ethanol extracts from the heartwood of white cypress pine (Callitris glaucophylla Thompson et Johnson) were investigated for their repellent activity against subterranean termite Coptotermes formosanus Shiraki worker using a two-choice semicircular filter paper test at 0.5% (w/w) concentration. Fraction CY-E2 composed of (−)-citronellic acid, guaiol, α-, β-, and γ-eudesmol isomers as well as an unknown compound, showed the highest statistically significant repellency (97.8% ± 2.2 SEM) of all fractions tested. Bioactivity-guided fractionations using high-performance liquid chromatography led to the isolation of two, oxygenated eudesmane-type sesquiterpenes with α-methylene moieties, both termite-repellent compounds. These compounds were subsequently identified as ilicic acid methyl ester (IAME) and costic acid by means of spectroscopic analyses, electron impact mass spectrometry, and nuclear magnetic resonance spectroscopy. We report the isolation of both IAME and costic acid from C. glaucophylla heartwood for the first time.

Key words

Callitris glaucophylla Termite repellent activity Sesquiterpene Ilicic acid methyl ester Costic acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thompson, J, Johnson, LAS 1986Callitris glaucophylla, Australia's ‘White Cypress Pine’ – a new name for an old speciesTelopea2731736Google Scholar
  2. 2.
    Tohya, R 1997Australia no cypress jijou (in Japanese)Wood Ind52259263Google Scholar
  3. 3.
    Rudman, P 1965The causes of natural durability in timber. Pt. XVII The causes of decay and termite resistance in Callitris columellaris F. MuellHolzforschung195257Google Scholar
  4. 4.
    Yazaki, Y, Hillis, WE 1977Components of the extractives from Callitris columellaris F. Muell. heartwood which affect termitesHolzforschung31188191Google Scholar
  5. 5.
    French, JRJ, Robinson, PJ, Yazaki, Y, Hillis, WE 1979Bioassays from white cypress pine (Callitris columellaris F. Muell.) against subterranean termitesHolzforschung33144148Google Scholar
  6. 6.
    Doimo, L 2001Azulenes, costols and S61543-lactones from cypress-pines (Callitris columellaris, C. glaucophylla and C. intratropica) distilled oils and methanol extractsJ Essent Oil Res132529Google Scholar
  7. 7.
    Doimo, L, Fletcher, RJ, D'Arcy, BR 1999Comparison in the S61543-lactone content of oils and extracts from white cypress pine (Callitris glaucophylla Thompson & Johnson)J Essent Oil Res11415422Google Scholar
  8. 8.
    Watanabe Y, Mitsunaga T, Yoshimura T. Investigating antitermitic compounds from Australian white cypress heartwood (Callitris glaucophylla Thompson et Johnson) against Coptotermes sformosanus Shiraki. J Essent Oil Res (in press)Google Scholar
  9. 9.
    Yuuya, S, Hagiwara, H, Suzuki, T, Ando, M, Yamada, A, Suda, K, Kataoka, T, Nagai, K 1999Guaianolides as immunomodulators. Synthesis and biological activities of dehydrocostus lactone, mokko lactone, eremanthin and their derivativesJ Nat Prod622230Google Scholar
  10. 10.
    Hall, IH, Lee, KH, Starnes, CO, Muraoka, O, Sumida, Y, Waddell, TG 1980Antihyperlipidemic activity of sesquiterpene lactones and related compoundsJ Pharm Sci69694697Google Scholar
  11. 11.
    Ohtani, Y, Hazama, M, Sameshima, K 1996Crucial chemical factors for termiticidal activity of hinoki wood (Chamaecyparis obtusa) II. Variations in termiticidal activities among five individual samples of hinoki wood (in Japanese)Mokuzai Gakkaishi4212281233Google Scholar
  12. 12.
    Herz, W, Chikamatsu, H, Tether, LR 1965Constituents of Ambrosia ilicifolia (Gray) PayneJ Org Chem3116321634Google Scholar
  13. 13.
    Sanz, JF, Castellano, G, Marco, JA 1990Sesquiterpene lactones from Artemisia herba-albaPhytochemistry29541545Google Scholar
  14. 14.
    Bawdekar, AS, Kelkar, GR 1965Terpenoids-LXVIII. Structure and absolute configuration of costic acid – a new sesquiterpenic acid from costus root oilTetrahedron2115211528Google Scholar
  15. 15.
    Rao, KV, Alvarez, FM 1981Antibiotic principle of Eupatorium capillifoliumJ Nat Prod44252256Google Scholar
  16. 16.
    Tan, RX, Wang, WZ 1995A new eudesmenoic acid from Artemisia phaeolepisJ Nat Prod58288290Google Scholar
  17. 17.
    Kuo, YH, Chen, CH 1997Diversifolol, a novel rearranged eudesmane sesquiterpene from the leaves of Tithonia diversifoliaChem Pharm Bull4512231224Google Scholar
  18. 18.
    Tan, RX, Jia, ZJ, Yan, ZQ, Deng, CH 1995New eudesmane acids from Artemisia hedinii OstenfIndian J Chem34B565568Google Scholar
  19. 19.
    Daniewski, WM, Kroszczynski, W, Bloszyk, E, Drozdz, B, Nawrot, J, Rychlewska, U, Budesinsky, M, Holub, M 1986Sesquiterpenenoids from Dittrichia ciscosa (L.) Greuter. Their structure and deterrent activityCollect Czech Chem Commun5117101721Google Scholar
  20. 20.
    García, M, Sosa, ME, Donadel, OJ, Giordano, OS, Tonn, CE 2003Allelochemical effects of eudesmane and eremophilane sesquiterpenes on Tribolium castaneum larvaeJ Chem Ecol29175187Google Scholar

Copyright information

© The Japan Wood Research Society 2005

Authors and Affiliations

  • Yasutaka Watanabe
    • 1
  • Rie Mihara
    • 1
  • Tohru Mitsunaga
    • 1
  • Tsuyoshi Yoshimura
    • 2
  1. 1.Faculty of BioresourcesMie UniversityTsuJapan
  2. 2.Research Institute for Sustainable HumanosphereKyoto UniversityUjiJapan

Personalised recommendations