Skip to main content
Log in

Incidental evidence of hypointensity in brain grey nuclei on routine MR imaging: when to suspect a neurodegenerative disorder?

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Deep grey nuclei of the human brain accumulate minerals both in aging and in several neurodegenerative diseases. Mineral deposition produces a shortening of the transverse relaxation time which causes hypointensity on magnetic resonance (MR) imaging. The physician often has difficulties in determining whether the incidental hypointensity of grey nuclei seen on MR images is related to aging or neurodegenerative pathology. We investigated the hypointensity patterns in globus pallidus, putamen, caudate nucleus, thalamus and dentate nucleus of 217 healthy subjects (ages, 20-79 years; men/women, 104/113) using 3T MR imaging. Hypointensity was detected more frequently in globus pallidus (35.5%) than in dentate nucleus (32.7%) and putamen (7.8%). A consistent effect of aging on hypointensity (p < 0.001) of these grey nuclei was evident. Putaminal hypointensity appeared only in elderly subjects whereas we did not find hypointensity in the caudate nucleus and thalamus of any subject. In conclusion, the evidence of hypointensity in the caudate nucleus and thalamus at any age or hypointensity in the putamen seen in young subjects should prompt the clinician to consider a neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51. https://doi.org/10.1111/j.1471-4159.1958.tb12607.x

    Article  CAS  PubMed  Google Scholar 

  2. Haacke EM, Cheng NYC, House MJ, Liu Q, Neelavalli J, Ogg RJ, Khan A, Ayaz M, Kirsch W, Obenaus A (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 23:1–25. https://doi.org/10.1016/j.mri.2004.10.001

    Article  CAS  PubMed  Google Scholar 

  3. Loeffler DA, Connor JR, Juneau PL, Snyder BS, Kanaley L, DeMaggio AJ, Nguyen H, Brickman CM, LeWitt PA (1995) Transferrin and iron in normal, Alzheimer’s disease and Parkinson’s disease brain regions. J Neurochem 65:710–724. https://doi.org/10.1046/j.1471-4159.1995.65020710.x

    Article  CAS  PubMed  Google Scholar 

  4. Bartzokis G, Cummings J, Perlman S, Hance DB, Mintz J (1999) Increased basal ganglia iron levels in Huntington disease. Arch Neurol 56:569–574. https://doi.org/10.1001/archneur.56.5.569

    Article  CAS  PubMed  Google Scholar 

  5. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13:1045–1060. https://doi.org/10.1016/S1474-4422(14)70117-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bizzi A, Brooks RA, Brunetti A, Hill JM, Alger JR, Miletich RS, Francavilla TL, Di Chiro G (1990) Role of iron and ferritin in MR imaging of the brain: a study in primates at different field strengths. Radiology 177:59–65. https://doi.org/10.1148/radiology.177.1.2399339

    Article  CAS  PubMed  Google Scholar 

  7. Aquino D, Bizzi A, Grisoli M, Garavaglia B, Bruzzone MG, Nardocci N, Savoiardo M, Chiapparini L (2009) Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. Radiology 252:165–172. https://doi.org/10.1148/radiol.2522081399

    Article  PubMed  Google Scholar 

  8. Bilgic B, Pfefferbaum A, Rohlfing T, Sullivan EV, Adalsteinsson E (2012) MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping. Neuroimage 59:2625–2635. https://doi.org/10.1016/j.neuroimage.2011.08.077

    Article  CAS  PubMed  Google Scholar 

  9. Glatz A, Valdés Hernández MC, Kiker AJ, Bastin ME, Deary IJ, Wardlaw JM (2013) Characterization of multifocal T2*-weighted MRI hypointensities in the basal ganglia of elderly, community-dwelling subjects. Neuroimage 82:470–480. https://doi.org/10.1016/j.neuroimage.2013.06.013

    Article  PubMed  Google Scholar 

  10. Haacke EM, Miao Y, Liu M, Habib CA, Katkuri Y, Liu T, Yang Z, Lang Z, Hu J, Wu J (2010) Correlation of putative iron content as represented by changes in R2* and phase with age in deep gray matter of healthy adults. J Magn Reson Imaging 32:561–576. https://doi.org/10.1002/jmri.22293

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li W, Wu B, Batrachenko A, Bancroft-Wu V, Morey RA, Shashi V, Langkammer C, De Bellis MD, Ropele S, Song AW, Liu C (2014) Differential developmental trajectories of magnetic susceptibility in human brain gray and white matter over the lifespan. Hum Brain Mapp 35:2698–2713. https://doi.org/10.1002/hbm.22360

    Article  CAS  PubMed  Google Scholar 

  12. Persson N, Wu J, Zhang Q, Liu T, Shen J, Bao R, Ni M, Liu T, Wang Y, Spincemaille P (2015) Age and sex related differences in subcortical brain iron concentrations among healthy adults. Neuroimage 122:385–398. https://doi.org/10.1016/j.neuroimage.2015.07.050

    Article  PubMed  Google Scholar 

  13. Pfefferbaum A, Adalsteinsson E, Rohlfing T, Sullivan EV (2009) MRI estimates of brain iron concentration in normal aging: comparison of field-dependent (FDRI) and phase (SWI) methods. Neuroimage 47:493–500. https://doi.org/10.1016/j.neuroimage.2009.05.006

    Article  PubMed  Google Scholar 

  14. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198. https://doi.org/10.1016/0022-3956(75)90026-6

    Article  CAS  Google Scholar 

  15. De Renzi E, Vignolo LA (1962) The token test: a sensitive test to detect receptive disturbances in aphasics. Brain 85:665–678. https://doi.org/10.1093/brain/85.4.665

    Article  Google Scholar 

  16. Carlesimo GA, Caltagirone C, Gainotti G (1996) The mental deterioration battery: normative data, diagnostic reliability and qualitative analyses of cognitive impairment. The group for the standardization of the mental deterioration battery. Eur Neurol 36:378–384. https://doi.org/10.1159/000117297

    Article  CAS  PubMed  Google Scholar 

  17. Zappalà G, Measso G, Cavarzeran F, Grigoletto F, Lebowitz B, Pirozzolo F, Amaducci L, Massari D, Crook T (1995) Aging and memory: corrections for age, sex and education for three widely used memory tests. Ital J Neurol Sci 16:177–184. https://doi.org/10.1007/BF02282985

    Article  PubMed  Google Scholar 

  18. Caffarra P, Vezzadini G, Dieci F, Zonato F, Venneri A (2004) Modified card sorting test: normative data. J Clin Exp Neuropsychol 26:246–250. https://doi.org/10.1076/jcen.26.2.246.28087

    Article  PubMed  Google Scholar 

  19. Appollonio I, Leone M, Isella V, Piamarta F, Consoli T, Villa ML, Forapani E, Russo A, Nichelli P (2005) The Frontal Assessment Battery (FAB): normative values in an Italian population sample. Neurol Sci 26:108–111. https://doi.org/10.1007/s10072-005-0443-4

    Article  CAS  PubMed  Google Scholar 

  20. Orsini A, Grossi D, Capitani E, Laiacona M, Papagno C, Vallar G (1987) Verbal and spatial immediate memory span: normative data from 1355 adults and 1112 children. Ital J Neurol Sci 8:539–548. https://doi.org/10.1007/BF02333660

    Article  CAS  PubMed  Google Scholar 

  21. Treccani B, Cubelli R (2011) The need for a revised version of the Benton judgment of line orientation test. J Clin Exp Neuropsychol 33:249–256. https://doi.org/10.1080/13803395.2010.511150

    Article  PubMed  Google Scholar 

  22. Hamilton M (1959) The assessment of anxiety states by rating. Br J Med Psychol 32:50–55. https://doi.org/10.1111/j.2044-8341.1959.tb00467.x

    Article  CAS  PubMed  Google Scholar 

  23. Beck AT, Steer RA (1987) Depression inventory scoring manual. The Psychological Corporation, New York

    Google Scholar 

  24. Langkammer C, Krebs N, Goessler W, Scheurer E, Ebner F, Yen K, Fazekas F, Ropele S (2010) Quantitative MR imaging of brain iron: a postmortem validation study. Radiology 257:455–462. https://doi.org/10.1148/radiol.10100495

    Article  PubMed  Google Scholar 

  25. Ramos P, Santos A, Pinto NR, Mendes R, Magalhães T, Almeida A (2014) Iron levels in the human brain: a post-mortem study of anatomical region differences and age-related changes. J Trace Elem Med Biol 28:13–17. https://doi.org/10.1016/j.jtemb.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  26. Casanova MF, Araque JM (2003) Mineralization of the basal ganglia: implications for neuropsychiatry, pathology and neuroimaging. Psychiatry Res 121:59–87. https://doi.org/10.1016/s0165-1781(03)00202-6

    Article  PubMed  Google Scholar 

  27. Maschke M, Weber J, Dimitrova A, Bonnet U, Bohrenkämper J, Sturm S, Kindsvater K, Müller BW, Gastpar M, Diener HC, Forsting M, Timmann D (2004) Age-related changes of the dentate nuclei in normal adults as revealed by 3D fast low angle shot (FLASH) echo sequence magnetic resonance imaging. J Neurol 251:740–746. https://doi.org/10.1007/s00415-004-0420-5

    Article  PubMed  Google Scholar 

  28. McNeill A, Birchall D, Hayflick SJ, Gregory A, Schenk JF, Zimmerman EA, Shang H, Miyajima H, Chinnery PF (2008) T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology 70:1614–1619. https://doi.org/10.1212/01.wnl.0000310985.40011.d6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gagliardi M, Morelli M, Annesi G, Nicoletti G, Perrotta P, Pustorino G, Iannello G, Tarantino P, Gambardella A, Quattrone A (2015) A new SLC20A2 mutation identified in southern Italy family with primary familial brain calcification. Gene 568:109–111. https://doi.org/10.1016/j.gene.2015.05.005

    Article  CAS  PubMed  Google Scholar 

  30. Harder SL, Hopp KM, Ward H, Neglio H, Gitlin J, Kido D (2008) Mineralization of the deep gray matter with age: a retrospective review with susceptibility-weighted MR imaging. AJNR Am J Neuroradiol 29:176–183. https://doi.org/10.3174/ajnr.A0770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pfefferbaum A, Adalsteinsson E, Rohlfing T, Sullivan EV (2010) Diffusion tensor imaging of deep gray matter brain structures: effects of age and iron concentration. Neurobiol Aging 31:482–493. https://doi.org/10.1016/j.neurobiolaging.2008.04.013

    Article  PubMed  Google Scholar 

  32. van Es AC, van der Grond J, de Craen AJ, Admiraal-Behloul F, Blauw GJ, van Buchem MA (2008) Caudate nucleus hypointensity in the elderly is associated with markers of neurodegeneration on MRI. Neurobiol Aging 29:1839–1846. https://doi.org/10.1016/j.neurobiolaging.2007.05.008

    Article  PubMed  Google Scholar 

  33. Shepherd J, Blauw GJ, Murphy MB, Cobbe SM, Bollen EL, Buckley BM, Ford I, Jukema JW, Hyland M, Gaw A, Lagaay AM, Perry IJ, Macfarlane PW, Meinders AE, Sweeney BJ, Packard CJ, Westendorp RG, Twomey C, Stott DJ (1999) The design of a prospective study of Pravastatin in the Elderly at Risk (PROSPER). PROSPER Study Group. PROspective Study of Pravastatin in the Elderly at Risk. Am J Cardiol 84:1192–1197. https://doi.org/10.1016/s0002-9149(99)00533-0

    Article  CAS  PubMed  Google Scholar 

  34. Penke L, Valdés Hernandéz MC, Maniega SM, Gow AJ, Murray C, Starr JM, Bastin ME, Deary IJ, Wardlaw JM (2012) Brain iron deposits are associated with general cognitive ability and cognitive aging. Neurobiol Aging 33:510–517. https://doi.org/10.1016/j.neurobiolaging.2010.04.032

    Article  CAS  PubMed  Google Scholar 

  35. Bartzokis G, Tishler TA, Lu PH, Villablanca P, Altshuler LL, Carter M, Huang D, Edwards N, Mintz J (2007) Brain ferritin iron may influence age- and gender-related risks of neurodegeneration. Neurobiol Aging 28:414–423. https://doi.org/10.1016/j.neurobiolaging.2006.02.005

    Article  CAS  PubMed  Google Scholar 

  36. Hagemeier J, Tong O, Dwyer MG, Schweser F, Ramanathan M, Zivadinov R (2015) Effects of diet on brain iron levels among healthy individuals: an MRI pilot study. Neurobiol Aging 36:1678–1685. https://doi.org/10.1016/j.neurobiolaging.2015.01.010

    Article  CAS  PubMed  Google Scholar 

  37. Tishler TA, Raven EP, Lu PH, Altshuler LL, Bartzokis G (2012) Premenopausal hysterectomy is associated with increased brain ferritin iron. Neurobiol Aging 33:1950–1958. https://doi.org/10.1016/j.neurobiolaging.2011.08.002

  38. Xu X, Wang Q, Zhang M (2008) Age, gender, and hemispheric differences in iron deposition in the human brain: an in vivo MRI study. Neuroimage 40:35–42. https://doi.org/10.1016/j.neuroimage.2007.11.017

    Article  CAS  PubMed  Google Scholar 

  39. Arabia G, Morelli M, Paglionico S, Novellino F, Salsone M, Giofrè L, Torchia G, Nicoletti G, Messina D, Condino F, Lanza P, Gallo O, Quattrone A (2010) An magnetic resonance imaging T2*-weighted sequence at short echo time to detect putaminal hypointensity in parkinsonisms. Mov Disord 25:2728–2734. https://doi.org/10.1002/mds.23173

    Article  PubMed  Google Scholar 

  40. Yekhlef F, Ballan G, Macia F, Delmer O, Sourgen C, Tison F (2003) Routine MRI for the differential diagnosis of Parkinson’s disease, MSA, PSP, and CBD. J Neural Transm 110:151–169. https://doi.org/10.1007/s00702-002-0785-5

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: all authors; methodology: Aldo Quattrone; formal analysis and investigation: all authors; writing–original draft preparation: Maurizio Morelli and Aldo Quattrone; writing-review and editing: all authors; supervision: Aldo Quattrone.

Corresponding author

Correspondence to Aldo Quattrone.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval and consent to participate

This research involved human participants. All procedures performed in this study that involved human participants were in accordance with the ethical standards of the Institutional Committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by the Ethical Committee of the Magna Graecia University of Catanzaro, Italy. Informed consent was obtained from all individual participants included in the study.

Consent for publication

Each study participant has given consent to the submission of the data to the journal.

Ethical responsibilities of authors

The authors declare that this manuscript is original, has not been published previously, that it is not under consideration for publication anywhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. All authors whose names appear on the submission made substantial contribution to the conception or design of the work; or the acquisition, analysis, or interpretation of data; or drafted the work, or revised it critically for important intellectual content. All authors approved the version to be published and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morelli, M., Quattrone, A., Arabia, G. et al. Incidental evidence of hypointensity in brain grey nuclei on routine MR imaging: when to suspect a neurodegenerative disorder?. Neurol Sci 43, 643–650 (2022). https://doi.org/10.1007/s10072-021-05292-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-021-05292-1

Keywords

Navigation