Advertisement

Clinical potential and current progress of mesenchymal stem cells for Parkinson’s disease: a systematic review

  • Ying Chen
  • Jiabing Shen
  • Kaifu Ke
  • Xiaosu GuEmail author
Review Article

Abstract

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease characterized by severe dyskinesia due to a progressive loss of dopaminergic neurons along the nigro-striatal pathway. The current focus of treatment is to relieve symptoms through administration of levodopa, such as L-3,4-dihydroxy phenylalanine replacement therapy, dopaminergic agonist administration, functional neurosurgery, and gene therapy, rather than preventing dopaminergic neuronal damage. Hence, the application and development of neuroprotective/disease modification strategies is absolutely necessary. Currently, stem cell therapy has been considered for PD treatment. As for the stem cells, mesenchymal stem cells (MSCs) seem to be the most promising. In this review, we analyze the mechanisms of action of MSCs in Parkinson’s disease, including growth factor secretion, exocytosis, and attenuation of neuroinflammation. To determine efficacy and protect patients from possible adverse effects, ongoing rigorous and controlled studies of MSC treatment will be critical.

Keywords

Mesenchymal stem cells Secretome Parkinson’s disease Dopaminergic neurons 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 81471188, 81671135).

Compliance with ethical standards

Conflict of interests

The authors have declared that no conflict of interests exists.

References

  1. 1.
    Benskey MJ, Perez RG, Manfredsson FP (2016) The contribution of alpha synuclein to neuronal survival and function—implications for Parkinson's disease. J Neurochem 137(3):331–359PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276(5321):2045–2047PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Manne S et al (2019) Alpha-Synuclein real-time quaking-induced conversion in the submandibular glands of Parkinson's disease patients. Mov DisordGoogle Scholar
  4. 4.
    Rovini A et al (2019) Molecular mechanism of olesoxime-mediated neuroprotection through targeting alpha-synuclein interaction with mitochondrial VDAC. Cell Mol Life SciGoogle Scholar
  5. 5.
    Feng ST et al (2019) Dynamin-related protein 1: a protein critical for mitochondrial fission, mitophagy, and neuronal death in Parkinson's disease. Pharmacol Res:104553CrossRefGoogle Scholar
  6. 6.
    Zhang J et al (2019) Apoptosis signal regulating kinase 1 deletion mitigates alpha-synuclein pre-formed fibril propagation in mice. Neurobiol Aging 85:49–57PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Bagheri-Mohammadi S et al (2019) Stem cell-based therapy for Parkinson's disease with a focus on human endometrium-derived mesenchymal stem cells. J Cell Physiol 234(2):1326–1335PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Olanow CW, Kordower JH, Lang AE, Obeso JA (2009) Dopaminergic transplantation for Parkinson's disease: current status and future prospects. Ann Neurol 66(5):591–596PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Anisimov SV (2009) Cell-based therapeutic approaches for Parkinson's disease: progress and perspectives. Rev Neurosci 20(5–6):347–381PubMedPubMedCentralGoogle Scholar
  10. 10.
    Venkatesh K, Sen D (2017) Mesenchymal stem cells as a source of dopaminergic neurons: a potential cell based therapy for Parkinson's disease. Curr Stem Cell Res Ther 12(4):326–347PubMedCrossRefGoogle Scholar
  11. 11.
    Danisovic L, Oravcova L, Krajciova L, Varchulova Novakova Z, Bohac M, Varga I, Vojtassak J (2017) Effect of long-term culture on the biological and morphological characteristics of human adipose tissue-derived stem cells. Journal of Physiology & Pharmacology: An Official Journal of the Polish Physiological Society 68(1):149–158Google Scholar
  12. 12.
    Kim SU, Lee HJ, Kim YB (2013) Neural stem cell-based treatment for neurodegenerative diseases. Neuropathology 33(5):491–504PubMedGoogle Scholar
  13. 13.
    Teixeira FG et al (2013) Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell Mol Life Sci 70(20):3871–3882PubMedCrossRefGoogle Scholar
  14. 14.
    Vizoso FJ et al (2017) Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 18(9)PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Baraniak PR, McDevitt TC (2010) Stem cell paracrine actions and tissue regeneration. Regen Med 5(1):121–143PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Marques CR et al (2018) Cell secretome based approaches in Parkinson's disease regenerative medicine. Expert Opin Biol Ther 18(12):1235–1245PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Wang X et al (2019) Exosomes influence the behavior of human mesenchymal stem cells on titanium surfaces. Biomaterials:119571PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ji W, Jiang W, Li M, Li J, Li Z (2019) miR-21 deficiency contributes to the impaired protective effects of obese rat mesenchymal stem cell-derived exosomes against spinal cord injury. Biochimie 167:171–178PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Guo S, Perets N, Betzer O, Ben-Shaul S, Sheinin A, Michaelevski I, Popovtzer R, Offen D, Levenberg S (2019) Intranasal delivery of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog siRNA repairs complete spinal cord injury. ACS Nano 13(9):10015–10028PubMedCrossRefGoogle Scholar
  21. 21.
    Yu L, Gui S, Liu Y, Qiu X, Zhang G, Zhang X, Pan J, Fan J, Qi S, Qiu B (2019) Exosomes derived from microRNA-199a-overexpressing mesenchymal stem cells inhibit glioma progression by down-regulating AGAP2. Aging (Albany NY) 11(15):5300–5318Google Scholar
  22. 22.
    Hong P et al (2019) The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: a comprehensive review. Stem Cell Res Ther 10(1):242PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kim HW, Lee HS, Kang JM, Bae SH, Kim C, Lee SH, Schwarz J, Kim GJ, Kim JS, Cha DH, Kim J, Chang SW, Lee TH, Moon J (2018) Dual effects of human placenta-derived neural cells on neuroprotection and the inhibition of neuroinflammation in a rodent model of Parkinson's disease. Cell Transplant 27(5):814–830PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    De la Rosa-Ruiz MDP et al (2019) Mesenchymal stem/stromal cells derived from dental tissues: a comparative in vitro evaluation of their immunoregulatory properties against T cells. Cells 8(12)Google Scholar
  25. 25.
    Castro LL et al (2019) Multiple doses of adipose tissue-derived mesenchymal stromal cells induce immunosuppression in experimental asthma. Stem Cells Transl MedGoogle Scholar
  26. 26.
    Bermudez MA et al (2015) Corneal epithelial wound healing and bactericidal effect of conditioned medium from human uterine cervical stem cells. Invest Ophthalmol Vis Sci 56(2):983–992PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Bermudez MA, Sendon-Lago J, Seoane S, Eiro N, Gonzalez F, Saa J, Vizoso F, Perez-Fernandez R (2016) Anti-inflammatory effect of conditioned medium from human uterine cervical stem cells in uveitis. Exp Eye Res 149:84–92PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Tran C, Damaser MS (2015) Stem cells as drug delivery methods: application of stem cell secretome for regeneration. Adv Drug Deliv Rev 82-83:1–11PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Danielyan L, Schäfer R, von Ameln-Mayerhofer A, Bernhard F, Verleysdonk S, Buadze M, Lourhmati A, Klopfer T, Schaumann F, Schmid B, Koehle C, Proksch B, Weissert R, Reichardt HM, van den Brandt J, Buniatian GH, Schwab M, Gleiter CH, Frey WH (2011) Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation Res 14(1):3–16PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Sun L, Li D, Song K, Wei J, Yao S, Li Z, Su X, Ju X, Chao L, Deng X, Kong B, Li L (2017) Exosomes derived from human umbilical cord mesenchymal stem cells protect against cisplatin-induced ovarian granulosa cell stress and apoptosis in vitro. Sci Rep 7(1):2552PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Lo Furno D, Mannino G, Giuffrida R (2017) Functional role of mesenchymal stem cells in the treatment of chronic neurodegenerative diseases. J Cell PhysiolGoogle Scholar
  32. 32.
    Aliaghaei A, Gardaneh M, Maghsoudi N, Salehinejad P, Gharib E (2016) Dopaminergic induction of umbilical cord mesenchymal stem cells by conditioned medium of choroid plexus epithelial cells reduces apomorphine-induced rotation in Parkinsonian rats. Arch Iran Med 19(8):561–570PubMedPubMedCentralGoogle Scholar
  33. 33.
    Martins LF, Costa RO, Pedro JR, Aguiar P, Serra SC, Teixeira FG, Sousa N, Salgado AJ, Almeida RD (2017) Mesenchymal stem cells secretome-induced axonal outgrowth is mediated by BDNF. Sci Rep 7(1):4153PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Astori G et al (2007) “In vitro” and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells. J Transl Med 5:55PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Blaber SP et al (2012) Analysis of in vitro secretion profiles from adipose-derived cell populations. J Transl Med 10:172PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    El Omar R et al (2014) Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? Tissue Eng Part B Rev 20(5):523–544PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Sekula M et al (2017) Polylactide- and polycaprolactone-based substrates enhance angiogenic potential of human umbilical cord-derived mesenchymal stem cells in vitro—implications for cardiovascular repair. Mater Sci Eng C Mater Biol Appl 77:521–533PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Cao N, Liao T, Liu J, Fan Z, Zeng Q, Zhou J, Pei H, Xi J, He L, Chen L, Nan X, Jia Y, Yue W, Pei X (2017) Clinical-grade human umbilical cord-derived mesenchymal stem cells reverse cognitive aging via improving synaptic plasticity and endogenous neurogenesis. Cell Death Dis 8(8):e2996PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23(7):845–856PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Silva JD, Lopes-Pacheco M, Paz AHR, Cruz FF, Melo EB, de Oliveira MV, Xisto DG, Capelozzi VL, Morales MM, Pelosi P, Cirne-Lima E, Rocco PRM (2018) Mesenchymal stem cells from bone marrow, adipose tissue, and lung tissue differentially mitigate lung and distal organ damage in experimental acute respiratory distress syndrome. Crit Care Med 46(2):e132–e140PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    von Einem JC et al (2017) Treatment of advanced gastrointestinal cancer with genetically modified autologous mesenchymal stem cells—TREAT-ME-1—a phase I, first in human, first in class trial. Oncotarget 8(46):80156–80166Google Scholar
  42. 42.
    Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Björklund A, Widner H, Revesz T, Lindvall O, Brundin P (2008) Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat Med 14(5):501–503PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Venkataramana NK, Kumar SK, Balaraju S, Radhakrishnan RC, Bansal A, Dixit A, Rao DK, Das M, Jan M, Gupta PK, Totey SM (2010) Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson's disease. Transl Res 155(2):62–70PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Yin F, Tian ZM, Liu S, Zhao QJ, Wang RM, Shen L, Wieman J, Yan Y (2012) Transplantation of human retinal pigment epithelium cells in the treatment for Parkinson disease. CNS Neurosci Ther 18(12):1012–1020PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Xiong N et al (2010) Long-term efficacy and safety of human umbilical cord mesenchymal stromal cells in rotenone-induced hemiparkinsonian rats. Biol Blood Marrow Transplant 16(11):1519–1529PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A, Montagna D, Maccario R, Villa R, Daidone MG, Zuffardi O, Locatelli F (2007) Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 67(19):9142–9149PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, Luo Y, Rao MS, Velagaleti G, Troyer D (2006) Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem Cells 24(3):781–792PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Shetty P, Thakur AM, Viswanathan C (2013) Dopaminergic cells, derived from a high efficiency differentiation protocol from umbilical cord derived mesenchymal stem cells, alleviate symptoms in a Parkinson's disease rodent model. Cell Biol Int 37(2):167–180PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Schwerk A et al (2015) Adipose-derived human mesenchymal stem cells induce long-term neurogenic and anti-inflammatory effects and improve cognitive but not motor performance in a rat model of Parkinson's disease. Regen Med 10(4):431–446PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Ye M, Wang XJ, Zhang YH, Lu GQ, Liang L, Xu JY, Sheng-di Chen (2007) Therapeutic effects of differentiated bone marrow stromal cell transplantation on rat models of Parkinson's disease. Parkinsonism Relat Disord 13(1):44–49PubMedCrossRefGoogle Scholar
  51. 51.
    Chen D, Fu W, Zhuang W, Lv C, Li F, Wang X (2017) Therapeutic effects of intranigral transplantation of mesenchymal stem cells in rat models of Parkinson's disease. J Neurosci Res 95(3):907–917PubMedCrossRefGoogle Scholar
  52. 52.
    Li Y, Chen J, Wang L, Zhang L, Lu M, Chopp M (2001) Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Neurosci Lett 316(2):67–70PubMedCrossRefGoogle Scholar
  53. 53.
    Meirelles Lda S, Fontes AM, Covas DT, Caplan AI (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20(5–6):419–427PubMedCrossRefGoogle Scholar
  54. 54.
    Zhou Y et al (2013) Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 4(2):34PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Zhu YG, Feng XM, Abbott J, Fang XH, Hao Q, Monsel A, Qu JM, Matthay MA, Lee JW (2014) Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells 32(1):116–125PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, Shang X, Zhang ZG, Chopp M (2012) Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 30(7):1556–1564PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Whone AL et al (2012) Human bone marrow mesenchymal stem cells protect catecholaminergic and serotonergic neuronal perikarya and transporter function from oxidative stress by the secretion of glial-derived neurotrophic factor. Brain Res 1431:86–96PubMedCrossRefGoogle Scholar
  58. 58.
    Teixeira FG, Carvalho MM, Panchalingam KM, Rodrigues AJ, Mendes-Pinheiro B, Anjo S, Manadas B, Behie LA, Sousa N, Salgado AJ (2017) Impact of the secretome of human mesenchymal stem cells on brain structure and animal behavior in a rat model of Parkinson's disease. Stem Cells Transl Med 6(2):634–646PubMedCrossRefGoogle Scholar
  59. 59.
    Moon HE, Yoon SH, Hur YS, Park HW, Ha JY, Kim KH, Shim JH, Yoo SH, Son JH, Paek SL, Kim IK, Hwang JH, Kim DG, Kim HJ, Jeon BS, Park SS, Paek SH (2013) Mitochondrial dysfunction of immortalized human adipose tissue-derived mesenchymal stromal cells from patients with Parkinson's disease. Exp Neurobiol 22(4):283–300PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Choi HS et al (2015) Therapeutic potentials of human adipose-derived stem cells on the mouse model of Parkinson's disease. Neurobiol Aging 36(10):2885–2892PubMedCrossRefGoogle Scholar
  61. 61.
    Parga JA et al (2017) Prostaglandin EP2 receptors mediate mesenchymal stromal cell—neuroprotective effects on dopaminergic neurons. Mol NeurobiolGoogle Scholar
  62. 62.
    Pchelintseva E, Djamgoz MBA (2017) Mesenchymal stem cell differentiation: control by calcium-activated potassium channels. J Cell PhysiolGoogle Scholar
  63. 63.
    Shetty P, Ravindran G, Sarang S, Thakur AM, Rao HS, Viswanathan C (2009) Clinical grade mesenchymal stem cells transdifferentiated under xenofree conditions alleviates motor deficiencies in a rat model of Parkinson's disease. Cell Biol Int 33(8):830–838PubMedCrossRefGoogle Scholar
  64. 64.
    Park HJ, Shin JY, Lee BR, Kim HO, Lee PH (2012) Mesenchymal stem cells augment neurogenesis in the subventricular zone and enhance differentiation of neural precursor cells into dopaminergic neurons in the substantia nigra of a parkinsonian model. Cell Transplant 21(8):1629–1640PubMedCrossRefGoogle Scholar
  65. 65.
    Kang EJ, Lee YH, Kim MJ, Lee YM, Kumar BM, Jeon BG, Ock SA, Kim HJ, Rho GJ (2013) Transplantation of porcine umbilical cord matrix mesenchymal stem cells in a mouse model of Parkinson's disease. J Tissue Eng Regen Med 7(3):169–182PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Fondazione Società Italiana di Neurologia 2020

Authors and Affiliations

  1. 1.Department of NeurologyAffiliated Hospital of Nantong UniversityNantongPeople’s Republic of China
  2. 2.Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongPeople’s Republic of China

Personalised recommendations