Different cortical excitability profiles in hereditary brain iron and copper accumulation

  • Raffaele DubbiosoEmail author
  • Lucia Ruggiero
  • Marcello Esposito
  • Paola Tarantino
  • Marcello De Angelis
  • Francesco Aruta
  • Sabina Pappatà
  • Lorenzo Ugga
  • Alberto Piperno
  • Raffaele Iorio
  • Lucio Santoro
  • Rosa Iodice
  • Fiore Manganelli
Original Article


Background and aim

Neurodegeneration with brain iron accumulation (NBIA) and Wilson’s disease (WD) is considered the prototype of neurodegenerative disorders characterised by the overloading of iron and copper in the central nervous system. Growing evidence has unveiled the involvement of these metals in brain cortical neurotransmission. Aim of this study was to assess cortical excitability profile due to copper and iron overload.


Three patients affected by NBIA, namely two patients with a recessive hereditary parkinsonism (PARK9) and one patient with aceruloplasminemia and 7 patients with neurological WD underwent transcranial magnetic stimulation (TMS) protocols to assess cortical excitability. Specifically, we evaluated the motor thresholds that reflect membrane excitability related to the voltage-gated sodium channels in the neurons of the motor system and the ease of activation of motor cortex via glutamatergic networks, and ad hoc TMS protocols to probe inhibitory-GABAergic (short interval intracortical inhibition, SICI; short-latency afferent inhibition, SAI; cortical silent period, CSP) and excitatory intracortical circuitry (intracortical facilitation, ICF).


Patients with NBIA exhibited an abnormal prolongation of CSP respect to HC and WD patients. On the contrary, neurological WD displayed higher motor thresholds and reduced CSP and SICI.


Hereditary conditions due to overload of copper and iron exhibited peculiar cortical excitability profiles that can help during differential diagnosis between these conditions. Moreover, such results can give us more clues about the role of metals in acquired neurodegenerative disorders, such as Parkinson disease, Alzheimer disease, and multiple sclerosis.


Neurodegeneration Metals Wilson’s disease NBIA TMS GABA 



Transcranial magnetic stimulation


Short-latency afferent inhibition


Short interval intracortical inhibition


Resting motor threshold


Active motor threshold


Intracortical facilitation


Cortical silent period


Magnetic resonance imaging


Positron emission tomography


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The protocol was approved by the local ethics committee, and the research was conducted in accordance with the 1964 Declaration of Helsinki.


  1. 1.
    Kozlowski H, Luczkowski M, Remelli M, Valensin D (2012) Copper, zinc and iron in neurodegenerative diseases (Alzheimer’s, Parkinson’s andprion diseases). Coord Chem Rev:2129–2141. CrossRefGoogle Scholar
  2. 2.
    Tecchio F, Assenza G, Zappasodi F et al (2011) Glutamate-mediated primary somatosensory cortex excitability correlated with circulating copper and ceruloplasmin. Int J Alzheimers Dis:292593. CrossRefGoogle Scholar
  3. 3.
    Du M, Wang D (2009) The neurotoxic effects of heavy metal exposure on GABAergic nervous system in nematode Caenorhabditis elegans. Environ Toxicol Pharmacol 27:314–320. CrossRefPubMedGoogle Scholar
  4. 4.
    McGee TP, Houston CM, Brickley SG (2013) Copper block of extrasynaptic GABAA receptors in the mature cerebellum and striatum. J Neurosci 33:13431–13435. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ye Q, Trivedi M, Zhang Y, Böhlke M, Alsulimani H, Chang J, Maher T, Deth R, Kim J (2019) Brain iron loading impairs DNA methylation and alters GABAergic function in mice. FASEB J 33:2460–2471. CrossRefPubMedGoogle Scholar
  6. 6.
    Ziemann U, Reis J, Schwenkreis P et al (2015) TMS and drugs revisited 2014. Clin Neurophysiol 126:1847–1868. CrossRefPubMedGoogle Scholar
  7. 7.
    Dubbioso R, Esposito M, Peluso S et al (2017) Disruption of GABA(A)-mediated intracortical inhibition in patients with chorea-acanthocytosis. Neurosci Lett 654:107–110. CrossRefPubMedGoogle Scholar
  8. 8.
    Dubbioso R, Ranucci G, Esposito M et al (2016) Subclinical neurological involvement does not develop if Wilson’s disease is treated early. Parkinsonism Relat Disord 24:15–19. CrossRefPubMedGoogle Scholar
  9. 9.
    Santoro L, Breedveld GJ, Manganelli F, Iodice R, Pisciotta C, Nolano M, Punzo F, Quarantelli M, Pappatà S, di Fonzo A, Oostra BA, Bonifati V (2011) Novel ATP13A2 (PARK9) homozygous mutation in a family with marked phenotype variability. Neurogenetics 12:33–39. CrossRefPubMedGoogle Scholar
  10. 10.
    Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, di Iorio R, di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application: An updated report from an I.F.C.N. Committee. Clin Neurophysiol 126:1071–1107. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dubbioso R, Raffin E, Karabanov A et al (2017) Centre-surround organization of fast sensorimotor integration in human motor hand area. Neuroimage 158:37–47. CrossRefPubMedGoogle Scholar
  12. 12.
    Picillo M, Dubbioso R, Iodice R, Iavarone A, Pisciotta C, Spina E, Santoro L, Barone P, Amboni M, Manganelli F (2015) Short-latency afferent inhibition in patients with Parkinson’s disease and freezing of gait. J Neural Transm 122:1533–1540. CrossRefPubMedGoogle Scholar
  13. 13.
    Di Lazzaro V, Manganelli F, Dileone M et al (2012) The effects of prolonged cathodal direct current stimulation on the excitatory and inhibitory circuits of the ipsilateral and contralateral motor cortex. J Neural Transm 119. CrossRefGoogle Scholar
  14. 14.
    Dubbioso R, Pellegrino G, Antenora A et al (2015) The effect of cerebellar degeneration on human sensori-motor plasticity. Brain Stimul 8:1144–1150. CrossRefPubMedGoogle Scholar
  15. 15.
    Pelucchi S, Mariani R, Ravasi G et al (2018) Phenotypic heterogeneity in seven Italian cases of aceruloplasminemia. Parkinsonism Relat Disord 51:36–42. CrossRefPubMedGoogle Scholar
  16. 16.
    Dubbioso R, Pappatà S, Quarantelli M et al (2013) Atypical clinical and radiological presentation of cryptococcal choroid plexitis in an immunocompetent woman. J Neurol Sci 334. CrossRefGoogle Scholar
  17. 17.
    Dubbioso R, Moretta P, Manganelli F, Fiorillo C, Iodice R, Trojano L, Santoro L (2012) Executive functions are impaired in heterozygote patients with oculopharyngeal muscular dystrophy. J Neurol 259. CrossRefGoogle Scholar
  18. 18.
    Manganelli F, Pisciotta C, Dubbioso R et al (2011) Electrophysiological characterisation in hereditary spastic paraplegia type 5. Clin Neurophysiol 122. CrossRefGoogle Scholar
  19. 19.
    Iodice R, Dubbioso R, Topa A, Ruggiero L, Pisciotta C, Esposito M, Tozza S, Santoro L, Manganelli F (2015) Electrophysiological characterization of adult-onset Niemann-Pick type C disease. J Neurol Sci 348:262–265. CrossRefPubMedGoogle Scholar
  20. 20.
    Cantello R, Gianelli M, Bettucci D, Civardi C, de Angelis MS, Mutani R (1991) Parkinson’s disease rigidity: magnetic motor evoked potentials in a small hand muscle. Neurology 41:1449–1456CrossRefGoogle Scholar
  21. 21.
    Haug BA, Schönle PW, Knobloch C, Köhne M (1992) Silent period measurement revives as a valuable diagnostic tool with transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol Evoked Potentials 85:158–160. CrossRefPubMedGoogle Scholar
  22. 22.
    Restivo DA (2004) Cortical silent period prolongation in spinocerebellar. Funct Neurol 19:37–41PubMedGoogle Scholar
  23. 23.
    Loetscher T, Macdonell RAL, Brodtmann A (2012) Cortical excitability and neurology : insights into the pathophysiology. Funct Neurol 27:131–145PubMedGoogle Scholar
  24. 24.
    McNeill A, Birchall D, Hayflick SJ, Gregory A, Schenk JF, Zimmerman EA, Shang H, Miyajima H, Chinnery PF (2008) T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology 70:1614–1619. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Schneider SA, Paisan-ruiz C, Quinn NP et al (2010) ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation. Mov Disord 25:979–984. CrossRefPubMedGoogle Scholar
  26. 26.
    Cantello R, Tarletti R, Civardi C (2002) Transcranial magnetic stimulation and Parkinson’s disease. Brain Res Rev 38:309–327CrossRefGoogle Scholar
  27. 27.
    Lefaucheur JP, Menard-Lefaucheur I, Maison P et al (2006) Electrophysiological deterioration over time in patients with Huntington’s disease. Mov Disord 21:1350–1354. CrossRefPubMedGoogle Scholar
  28. 28.
    Zittel S, Kroeger J, van der Vegt JPM et al (2012) Motor pathway excitability in ATP13A2 mutation carriers: a transcranial magnetic stimulation study. Parkinsonism Relat Disord 18:590–594. CrossRefPubMedGoogle Scholar
  29. 29.
    Brüggemann N, Hagenah J, Reetz K et al (2010) Recessively inherited parkinsonism: Effect of ATP13A2 mutations on the clinical and neuroimaging phenotype. Arch Neurol 67:1357–1363. CrossRefPubMedGoogle Scholar
  30. 30.
    Manganelli F, Dubbioso R, Iodice R, Topa A, Dardis A, Russo CV, Ruggiero L, Tozza S, Filla A, Santoro L (2014) Central cholinergic dysfunction in the adult form of Niemann Pick disease type C: a further link with Alzheimer’s disease? J Neurol 261:804–808. CrossRefPubMedGoogle Scholar
  31. 31.
    Dubbioso R, Manganelli F, Siebner HR, Di Lazzaro V (2019) Fast intracortical sensory-motor integration: a window into the pathophysiology of Parkinson’s disease. Front Hum Neurosci 13:111. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chen P, Miah M, Aschner M (2016) Metals and neurodegeneration. F1000Res 5. CrossRefGoogle Scholar

Copyright information

© Fondazione Società Italiana di Neurologia 2019

Authors and Affiliations

  • Raffaele Dubbioso
    • 1
    Email author
  • Lucia Ruggiero
    • 1
  • Marcello Esposito
    • 1
  • Paola Tarantino
    • 1
  • Marcello De Angelis
    • 1
  • Francesco Aruta
    • 1
  • Sabina Pappatà
    • 2
  • Lorenzo Ugga
    • 3
  • Alberto Piperno
    • 4
  • Raffaele Iorio
    • 5
  • Lucio Santoro
    • 1
  • Rosa Iodice
    • 1
  • Fiore Manganelli
    • 1
  1. 1.Department of Neurosciences, Reproductive Sciences and OdontostomatologyUniversity of Naples “Federico II”NaplesItaly
  2. 2.Institute of Biostructure and BioimagingNational Council of ResearchNapoliItaly
  3. 3.Department of Advanced Biomedical SciencesUniversity of Naples “Federico II”NaplesItaly
  4. 4.Department of Medicine and SurgeryUniversity of Milano-BicoccaMonzaItaly
  5. 5.Department of Translational Medical Sciences, Section of PediatricsUniversity of Naples “Federico II”NaplesItaly

Personalised recommendations