Neurological Sciences

, Volume 40, Issue 12, pp 2617–2624 | Cite as

Added assessment of middle cerebral artery and atrial fibrillation to FLAIR vascular hyperintensity-DWI mismatch would improve the outcome prediction of acute infarction in patients with acute internal carotid artery occlusion

  • Tao Yuan
  • Guoli Ren
  • Xianning Hu
  • Lina Geng
  • Xueqing Li
  • Shuang Xia
  • Guanmin QuanEmail author
Original Article


Background and aims

Whether fluid-attenuated inversion recovery (FLAIR) vascular hyperintensities (FVH)-DWI mismatch could predict the outcome or not remains in debate. The aim of this study was to identify if FVH combined with the other markers improved favorable outcome prediction of acute infarctions in patients with unilateral acute internal carotid artery (ICA) occlusion.


Consecutive 68 adult acute middle cerebral artery (MCA) territory infarction patients caused by acute ICA occlusion, including favorable (n = 38, mRS ≤ 2) and unfavorable (n = 30, mRS > 2) groups, were enrolled in this retrospective analysis. The diagnostic efficiency of favorable clinical outcome of FVH-DWI mismatch was compared with those of DWI lesions volumetry and the combined marker of FVH-DWI mismatch and other factors.


There were more prominent FVH-DWI mismatch (≥ 3 sections) (84%), less atrial fibrillation (AFib) (13%), and more tandem MCA normal or mild stenosis (63%) in favorable outcome group than those (30%, 40%, and 27%, respectively) in unfavorable group. Univariate and multivariate analyses showed that the prominent FVH-DWI mismatch was the positive predictive factor for favorable outcome (OR = 2.643 and 3.200). Prominent FVH-DWI mismatch, in combination with tandem MCA normal or mild stenosis, and absence of Afib, had better performance (AUC = 0.875) than that of initial DWI lesion volumetry (AUC = 0.854) and any other single factor (AUC = 0.634~0.820) in predicting favorable outcome.


Prominent FVH-DWI mismatch was associated with favorable outcome in acute infarctions in unilateral ICA occlusion patients. Its predictive performance would be improved when combined with the assessment of tandem lesions of MCA and AFib.


Stroke Internal carotid artery Magnetic resonance imaging Fluid-attenuated inversion recovery Outcome 


Source of funding

This study is supported by National Natural Scientific Grant (Xia S, project no. 81871342) and Key Project in Medical Science Research of Hebei Province (Yuan T, project no. 20170615; Quan G, no. 20180362).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The Ethics Committee of The Second Hospital of Hebei Medical University approved this retrospective study. Due to the retrospective nature of this study, the informed written consent was waved.


  1. 1.
    de Weerd M, Greving JP, Hedblad B, Lorenz MW, Mathiesen EB, O’Leary DH, Rosvall M, Sitzer M, Buskens E, Bots ML (2010) Prevalence of asymptomatic carotid artery stenosis in the general population: an individual participant data meta-analysis. Stroke 41:1294–1297CrossRefGoogle Scholar
  2. 2.
    Momjian-Mayor I, Baron JC (2005) The pathophysiology of watershed infarction in internal carotid artery disease: review of cerebral perfusion studies. Stroke 36:567–677CrossRefGoogle Scholar
  3. 3.
    Yuan T, Ren G, Quan G, Gao D (2018) Fewer peripheral asymmetrical cortical veins is a predictor of favorable outcome in MCA infarctions with SWI-DWI mismatch. J Magn Reson Imaging 48:964–970CrossRefGoogle Scholar
  4. 4.
    Bang OY, Goyal M, Liebeskind DS (2015) Collateral circulation in ischemic stroke: assessment tools and therapeutic strategies. Stroke 46:3302–3309CrossRefGoogle Scholar
  5. 5.
    Raymond SB, Schaefer PW (2017) Imaging brain collaterals: quantification, scoring, and potential significance. Top Magn Reson Imaging 26:67–75CrossRefGoogle Scholar
  6. 6.
    Christoforidis GA, Karakasis C, Mohammad Y, Caragine LP, Yang M, Slivka AP (2009) Predictors of hemorrhage following intra-arterial thrombolysis for acute ischemic stroke: the role of pial collateral formation. AJNR Am J Neuroradiol 30:165–170CrossRefGoogle Scholar
  7. 7.
    Olivot JM, Mlynash M, Inoue M, Marks MP, Wheeler HM, Kemp S, Straka M, Zaharchuk G, Bammer R, Lansberg MG, Albers GW, DEFUSE 2 Investigators (2014) DEFUSE 2 investigators: hypoperfusion intensity ratio predicts infarct progression and functional outcome in the DEFUSE 2 cohort. Stroke 45:1018–1023CrossRefGoogle Scholar
  8. 8.
    Legrand L, Tisserand M, Turc G, Naggara O, Edjlali M, Mellerio C, Mas JL, Méder JF, Baron JC, Oppenheim C (2015) Do FLAIR vascular hyperintensities beyond the DWI lesion represent the ischemic penumbra? AJNR Am J Neuroradiol 36:269–274CrossRefGoogle Scholar
  9. 9.
    Azizyan A, Sanossian N, Mogensen MA, Liebeskind DS (2011) Fluid-attenuated inversion recovery vascular hyperintensities: an important imaging marker for cerebrovascular disease. AJNR Am J Neuroradiol 32:1771–1775CrossRefGoogle Scholar
  10. 10.
    Hohenhaus M, Schmidt WU, Brunecker P, Xu C, Hotter B, Rozanski M, Fiebach JB, Jungehülsing GJ (2012) FLAIR vascular hyperintensities in acute ICA and MCA infarction: a marker for mismatch and stroke severity? Cerebrovasc Dis 34:63–69CrossRefGoogle Scholar
  11. 11.
    Mahdjoub E, Turc G, Legrand L, Benzakoun J, Edjlali M, Seners P, Charron S, Ben Hassen W, Naggara O, Meder JF, Mas JL, Baron JC, Oppenheim C (2018) Do fluid-attenuated inversion recovery vascular hyperintensities represent good collaterals before reperfusion therapy? AJNR 39:77–83CrossRefGoogle Scholar
  12. 12.
    Haussen DC, Koch S, Saraf-Lavi E, Shang T, Dharmadhikari S, Yavagal DR (2013) FLAIR distal hyperintense vessels as a marker of perfusion-diffusion mismatch in acute stroke. J Neuroimaging 23:397–400CrossRefGoogle Scholar
  13. 13.
    Legrand L, Tisserand M, Turc G, Edjlali M, Calvet D, Trystram D, Roca P, Naggara O, Mas JL, Méder JF, Baron JC, Oppenheim C (2016) Fluid-attenuated inversion recovery vascular hyperintensities-diffusion-weighted imaging mismatch identifies acute stroke patients most likely to benefit from recanalization. Stroke 47:424–427CrossRefGoogle Scholar
  14. 14.
    Lansberg MG, Straka M, Kemp S, Mlynash M, Wechsler LR, Jovin TG, Wilder MJ, Lutsep HL, Czartoski TJ, Bernstein RA, Chang CW, Warach S, Fazekas F, Inoue M, Tipirneni A, Hamilton SA, Zaharchuk G, Marks MP, Bammer R, Albers GW, DEFUSE 2 study investigators (2012) DEFUSE 2 study investigators: MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): a prospective cohort study. Lancet Neurol 11:860–867CrossRefGoogle Scholar
  15. 15.
    Mundiyanapurath S, Ringleb PA, Diatschuk S, Hansen MB, Mouridsen K, Østergaard L, Wick W1, Bendszus M, Radbruch A (2016) Capillary transit time heterogeneity is associated with modified Rankin Scale score at discharge in patients with bilateral high grade internal carotid artery stenosis. PLoS One 23(11):e0158148CrossRefGoogle Scholar
  16. 16.
    Mundiyanapurath S, Ringleb PA, Diatschuk S, Burth S, Möhlenbruch M, Floca RO, Wick W, Bendszus M, Radbruch A (2016) Cortical vessel sign on susceptibility weighted imaging reveals clinically relevant hypoperfusion in internal carotid artery stenosis. Eur J Radiol 85:534–539CrossRefGoogle Scholar
  17. 17.
    Kufner A, Nolte CH, Ebinger M (2013) Response to letter regarding article, “smoking-thrombolysis paradox: recanalization and reperfusion rates after intravenous tissue plasminogen activator in smokers with ischemic stroke”. Stroke 44:e59PubMedGoogle Scholar
  18. 18.
    Kufner A, Galinovic I, Ambrosi V, Nolte CH, Endres M, Fiebach JB, Ebinger M (2015) Hyperintense vessels on fLAIR: hemodynamic correlates and response to thrombolysis. AJNR Am J Neuroradiol 36:1426–1430CrossRefGoogle Scholar
  19. 19.
    Huang X, Liu W, Zhu W, Ni G, Sun W, Ma M, Zhou Z, Wang Q, Xu G, Liu X (2012) Distal hyperintense vessels on FLAIR: a prognostic indicator of acute ischemic stroke. Eur Neurol 68:214–220CrossRefGoogle Scholar
  20. 20.
    Kawashima M, Noguchi T, Takase Y, Nakahara Y, Matsushima T (2010) Decrease in leptomeningeal ivy sign on fluid-attenuated inversion recovery images after cerebral revascularization in patients with Moyamoya disease. AJNR Am J Neuroradiol 31:1713–1718CrossRefGoogle Scholar
  21. 21.
    Song J, Ma Z, Meng H, Yu J, Li Y, Hong X, Shi H (2016) Distal hyperintense vessels alleviate insula infarction in proximal middle cerebral artery occlusion. Int J Neurosci 126:1030–1035CrossRefGoogle Scholar
  22. 22.
    Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, Roy D, Jovin TG, Willinsky RA, Sapkota BL, Dowlatshahi D, Frei DF, Kamal NR, Montanera WJ, Poppe AY, Ryckborst KJ, Silver FL, Shuaib A, Tampieri D, Williams D, Bang OY, Baxter BW, Burns PA, Choe H, Heo JH, Holmstedt CA, Jankowitz B, Kelly M, Linares G, Mandzia JL, Shankar J, Sohn SI, Swartz RH, Barber PA, Coutts SB, Smith EE, Morrish WF, Weill A, Subramaniam S, Mitha AP, Wong JH, Lowerison MW, Sajobi TT, Hill MD, ESCAPE Trial Investigators (2015) ESCAPE Trial Investigators: Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 372:1019–1030CrossRefGoogle Scholar
  23. 23.
    Gawlitza M, Friedrich B, Quäschling U, Schob S, Schaudinn A, Hobohm C, Hoffmann KT, Lobsien D (2015) Distance to thrombus on MR angiography predicts outcome of middle cerebral artery occlusion treated with IV thrombolysis. Neuroradiology 57:991–997CrossRefGoogle Scholar
  24. 24.
    Lee KY, Latour LL, Luby M, Hsia AW, Merino JG, Warach S (2009) Distal hyperintense vessels on FLAIR: an MRI marker for collateral circulation in acute stroke? Neurology 72:1134–1139CrossRefGoogle Scholar
  25. 25.
    Legge J, Graham A, Male S, Copeland D, Lee R, Goyal N, Zand R (2017) Fluid-attenuated inversion recovery (FLAIR) signal intensity can identify stroke within 6 and 8 hours. J Stroke Cerebrovasc Dis 26:1582–1587CrossRefGoogle Scholar
  26. 26.
    Su YC, Lim SN, Yang FY, Lin SK (2017) Evaluation of cerebral blood flow in acute ischemic stroke patients with atrial fibrillation: a sonographic study. J Formos Med Assoc 116:287–294CrossRefGoogle Scholar
  27. 27.
    Boriani G, Botto GL, Padeletti L, Santini M, Capucci A, Gulizia M, Ricci R, Biffi M, De Santo T, Corbucci G, Lip GY, Italian AT-500 Registry Investigators (2011) Italian AT-500 Registry Investigators: improving stroke risk stratification using the CHADS2 and CHA2DS2-VASc risk scores in patients with paroxysmal atrial fibrillation by continuous arrhythmia burden monitoring. Stroke 42:1768–1770CrossRefGoogle Scholar
  28. 28.
    Saver JL (2007) Novel end point analytic techniques and interpreting shifts across the entire range of outcome scales in acute stroke trials. Stroke 38:3055–3062CrossRefGoogle Scholar

Copyright information

© Fondazione Società Italiana di Neurologia 2019

Authors and Affiliations

  1. 1.Department of Medical ImagingThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
  2. 2.Department of Medical ImagingLiaocheng People’s HospitalLiaochengChina
  3. 3.Department of Medical ImagingLingshou County People’s HospitalShijiazhuangChina
  4. 4.Department of RadiologyTianjin First Central HospitalTianjinChina

Personalised recommendations