Neurological Sciences

, Volume 40, Issue 12, pp 2609–2615 | Cite as

CMAP decrement by low-frequency repetitive nerve stimulation in different hand muscles of ALS patients

  • Dong Zhang
  • Yuying ZhaoEmail author
  • Chuanzhu Yan
  • Lili Cao
  • Wei Li
Original Article



To study compound muscle action potential (CMAP) decrement by low-frequency repetitive nerve stimulation (RNS) in different hand muscles of amyotrophic lateral sclerosis (ALS) patients and the relationship with split hand phenomenon and clinical manifestation.


Clinical and decrement data of 51 ALS patients who had done RNS in different hand muscles were retrospectively reviewed from November 2016 to July 2017. Decrement data of 24 myasthenia gravis (MG) and 20 Lambert Eaton myasthenia syndrome (LEMS) patients was also reviewed to compare decrement pattern with hand muscles of ALS patients.


There was statistical significance between the decrement ratio of abductor digiti minimi (ADM) and abductor pollicis brevis (APB) as well as ADM and first dorsal interosseous (FDI). The decrements of the APB, ADM, and FDI were negatively correlated with their amplitude of CMAPs respectively. The difference between the decrement ratio of the APB and ADM was negatively correlated with the division ratio (CMAPAPB/CMAPADM). The decrement ratio of APB and FDI was negatively correlated with their muscle strength. There was a mild correlation between decrement ratio of APB and disease course. There was no statistical significance in the decrement pattern of the three-hand muscles of ALS patients. There was statistical significance in decrement pattern between APB of ALS and LEMS patients.


Dysfunction of neuromuscular transmission was found in hand muscles of ALS patients, APB was involved most significantly. The dysfunction of neuromuscular transmission might be involved in the formation of the split hand phenomenon.


Amyotrophic lateral sclerosis Repetitive nerve stimulation Decrement Hand muscles 



We thank the patients for their participation.


(I) Conception and design: Y Zhao, C Yan, D Zhang; (II) Administrative support: C Yan; (III) Provision of study materials or patients: Y Zhao, D Zhang, L Cao; (IV) Collection and assembly of data: D Zhang, W Li, L Cao; (V) Data analysis and interpretation: D Zhang, L Cao, W Li, Y Zhao; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.


This study was supported by the Grants from National Natural Science Foundation of China (No.81701237).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10072_2019_4027_MOESM1_ESM.docx (16 kb)
ESM 1 (DOCX 15.5 kb)
10072_2019_4027_MOESM2_ESM.xlsx (19 kb)
ESM 2 (XLSX 18.6 kb)
10072_2019_4027_MOESM3_ESM.pdf (354 kb)
ESM 3 (PDF 354 kb)
10072_2019_4027_MOESM4_ESM.pdf (496 kb)
ESM 4 (PDF 495 kb)


  1. 1.
    van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, van den Berg LH (2017) Amyotrophic lateral sclerosis. Lancet 390(10107):2084–2098. CrossRefPubMedGoogle Scholar
  2. 2.
    Kuwabara S, Sonoo M, Komori T, Hirashima F, Inaba A, Misawa S, Hatanaka Y, Tokyo Metropolitan Neuromuscular Electrodiagnosis Study Group (2008) Dissociated small hand muscle atrophy in amyotrophic lateral sclerosis: frequency, extent, and specificity. Muscle Nerve 37:426e30. CrossRefGoogle Scholar
  3. 3.
    Weber M, Eisen A, Stewart H, Hirota N (2000) The split hand in ALS has a cortical basis. J NeurolSci 180:66e70. CrossRefGoogle Scholar
  4. 4.
    Kanai K, Kuwabara S, Misawa S, Tamura N, Ogawara K, Nakata M, Sawai S, Hattori T, Bostock H (2006) Altered axonal excitability properties in amyotrophic lateral sclerosis: impaired potassium channel function related to disease stage. Brain 129:953e62. CrossRefGoogle Scholar
  5. 5.
    Vucic S, Kiernan MC (2006) Axonal excitability properties in amyotrophic lateral sclerosis. Clin Neurophysiol 117:1458e66. CrossRefGoogle Scholar
  6. 6.
    Schelhaas HJ, van de Warrenburg BP, Kremer HP, Zwarts MJ (2003) The “split hand” phenomenon: evidence of a spinal origin. Neurology 61:1619e20. CrossRefGoogle Scholar
  7. 7.
    Park D, Park JS (2017) Terminal latency abnormality in amyotrophic lateral sclerosis without split hand syndrome. Neurol Sci 38(5):775–781. CrossRefPubMedGoogle Scholar
  8. 8.
    Martineau É, Di Polo A, Vande Velde C, Robitaille R (2018) Dynamic neuromuscular remodeling precedes motor-unit loss in a mouse model of ALS. Elife 15(7):41973. CrossRefGoogle Scholar
  9. 9.
    Tremblay E, Martineau É, Robitaille R (2017) Opposite synaptic alterations at the neuromuscular junction in an ALS mouse model: when motor units matter. J Neurosci 37(37):8901–8918. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cappello V, Francolini M (2017) Neuromuscular junction dismantling in amyotrophic lateral sclerosis. Int J Mol Sci 18(10):2092. CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Alanazy MH, Hegedus J, White C, Korngut L (2017) Decremental responses in patients with motor neuron disease. Brain Behav 26;7(11):e00846. CrossRefGoogle Scholar
  12. 12.
    Killian JM, Wilfong AA, Burnett L, Appel SH, Boland D (1994) Decremental motor responses to repetitive nerve stimulation in ALS. Muscle Nerve 17:747–754. CrossRefPubMedGoogle Scholar
  13. 13.
    Henderson R, Baumann F, Hutchinson N, McCombe P (2009) CMAP decrement in ALS. Muscle Nerve 39:555–556. CrossRefPubMedGoogle Scholar
  14. 14.
    Brooks BR, Miller RG, Swash M, Munsat TL, World Federation of Neurology Research Group on Motor Neuron D (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis and other motor neuron disorders: official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases 1(5):293–9.Google Scholar
  15. 15.
    Luigetti M, Conte A, Del Grande A, Bisogni G, Romano A, Sabatelli M, Amin Lari A, Ghavanini AA, Bokaee HR (2012) Sural nerve pathology in ALS patients: a single-centre experience. Neurol Sci 33(5):1095–1099. CrossRefPubMedGoogle Scholar
  16. 16.
    Simon NG, Lomen-Hoerth C, Kiernan MC (2014) Patterns of clinical and electrodiagnostic abnormalities in early amyotrophic lateral sclerosis. Muscle Nerve 50(6):894–899. CrossRefPubMedGoogle Scholar
  17. 17.
    Yang H, Liu M, Li X, Cui B, Fang J, Cui L (2015) Neurophysiological differences between flail arm syndrome and amyotrophic lateral sclerosis. PLoS One 9; 10(6):e0127601. CrossRefGoogle Scholar
  18. 18.
    Sun X, Zhang Z, Liu N (2016) Absence of split hand in the flail arm variant of ALS. Neurophysiol Clin 46(2):149–152. CrossRefPubMedGoogle Scholar
  19. 19.
    Kim JE, Hong YH, Lee JH, Ahn SW, Kim SM, Park KS, Sung JJ, Lee KW, Seong SY (2015) Pattern difference of dissociated hand muscle atrophy in amyotrophic lateral sclerosis and variants. Muscle Nerve 51(3):333–337. CrossRefPubMedGoogle Scholar
  20. 20.
    Wang FC, De Pasqua V, Gerard P, Delwaide PJ (2001) Prognostic value of decremental responses to repetitive nerve stimulation in ALS patients. Neurology 57:897–899. CrossRefPubMedGoogle Scholar
  21. 21.
    Yamashita S, Sakaguchi H, Mori A, Kimura E, Maeda Y, Hirano T, Uchino M (2012) Significant CMAP decrement by repetitive nerve stimulation is more frequent in median than ulnar nerves of patients with amyotrophic lateral sclerosis. Muscle Nerve 45(3):426–428. CrossRefPubMedGoogle Scholar
  22. 22.
    Inoue K, Hemmi S, Miyaishi M, Kutoku Y, Murakami T, Kurokawa K, Sunada Y (2009) Muscular fatigue and decremental response to repetitive nerve stimulation in X-linked spinobulbar muscular atrophy. Eur J Neurol 16(1):76–80. CrossRefPubMedGoogle Scholar
  23. 23.
    Wadman RI, Vrancken AF, van den Berg LH, van der Pol WL (2012) Dysfunction of the neuromuscular junction in spinal muscular atrophy types 2 and 3. Neurology 79(20):2050–2055. CrossRefPubMedGoogle Scholar
  24. 24.
    Iwanami T, Sonoo M, Hatanaka Y, Hokkoku K, Oishi C, Shimizu T (2011) Decremental responses to repetitive nerve stimulation (RNS) in motor neuron disease. Clin Neurophysiol 122(12):2530–2536. CrossRefPubMedGoogle Scholar
  25. 25.
    Pera MC, Luigetti M, Pane M, Coratti G, Forcina N, Fanelli L, Mazzone ES, Antonaci L, Lapenta L, Palermo C, Ranalli D, Granata G, Lomonaco M, Servidei S, Mercuri E (2017) 6MWT can identify type 3 SMA patients with neuromuscular junction dysfunction. Neuromuscul Disord 27(10):879–882. CrossRefPubMedGoogle Scholar
  26. 26.
    Baslo MB, Deymeer F, Serdaroglu P, Parman Y, Ozdemir C, Cuttini M (2006) Decrement pattern in Lambert-Eaton myasthenic syndrome is different from myasthenia gravis. Neuromuscul Disord 16(7):454–458. CrossRefPubMedGoogle Scholar
  27. 27.
    Luigetti M, Modoni A, Lo Monaco M (2013) Low rate repetitive nerve stimulation in Lambert-Eaton myasthenic syndrome: peculiar characteristics of decremental pattern from a single-centre experience. Clin Neurophysiol 124(4):825–826. CrossRefPubMedGoogle Scholar
  28. 28.
    Sanders DB (1993) Clinical neurophysiology of disorders of the neuromuscular junction. J Clin Neurophysiol 10:167–180CrossRefGoogle Scholar

Copyright information

© Fondazione Società Italiana di Neurologia 2019

Authors and Affiliations

  1. 1.Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of NeurologyQilu Hospital, Shandong UniversityJinanChina
  2. 2.Brain Science Research Institute, Qilu HospitalShandong UniversityJinanChina
  3. 3.Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao)Shandong UniversityQingdaoChina

Personalised recommendations