Advertisement

Neurological Sciences

, Volume 40, Issue 12, pp 2447–2457 | Cite as

Optic nerve sheath diameter: present and future perspectives for neurologists and critical care physicians

  • Piergiorgio LochnerEmail author
  • Marek Czosnyka
  • Andrea Naldi
  • Epameinondas Lyros
  • Paolo Pelosi
  • Shrey Mathur
  • Klaus Fassbender
  • Chiara Robba
Review Article

Abstract

Background

Estimation of intracranial pressure (ICP) may be helpful in the management of neurological critically ill patients. It has been shown that ultrasonography of the optic nerve sheath diameter (ONSD) is a reliable tool for non-invasive estimation of increased intracranial pressure (ICP) at hospital admission or in intensive care. Less is known about the estimation of increased ICP and usefulness of ONSD in the prehospital setting. The aim of this review was to elucidate both prevailing and novel applications of ONSD for neurologists and critical care physicians.

Methods

In this review, we discuss the technique and the novel approach of ONSD measurement, the clinical applications of ONSD in neurology and critical care patients.

Results

ONSD measurement is simple, easy to learn, and has diverse applications. ONSD has utility for ICP measurement in intracranial hemorrhage and ischemic stroke, meningitis and encephalitis, and idiopathic intracranial hypertension (IIH). It is also valuable for lesser known syndromes, where an increase of ICP is postulated, such as acute mountain sickness and posterior reversible encephalopathy syndrome. ONSD changes develop in inflammatory or ischemic optic neuropathies. Some papers demonstrate the usefulness of ONSD studies in symptomatic intracranial hypotension.

Conclusions

ONSD is a safe and low-cost bedside tool with the potential of screening patients who need other neuroimaging and those who may need an invasive measurement of ICP.

Keywords

Optic nerve sheath diameter (ONSD) Transorbital ultrasonography (TSO) Optic nerve Symptomatic intracranial hypotension (SIH) Intracranial pressure (ICP) Acute mountain sickness (AMS) 

Notes

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ertl M et al (2014) Ocular color-coded sonography—a promising tool for neurologists and intensive care physicians. Ultraschall Med 35:422–431.  https://doi.org/10.1055/s-0034-1366113 CrossRefPubMedGoogle Scholar
  2. 2.
    Robba C et al (2018) Optic nerve sheath diameter measured sonographically as non-invasive estimator of intracranial pressure: a systematic review and meta-analysis. Intensive Care Med 44:1284–1294.  https://doi.org/10.1007/s00134-018-5305-7 CrossRefPubMedGoogle Scholar
  3. 3.
    Fichtner J et al (2016) Management of spontaneous intracranial hypotension—transorbital ultrasound as discriminator. J Neurol Neurosurg Psychiatry 87:650–655.  https://doi.org/10.1136/jnnp-2015-310853 CrossRefPubMedGoogle Scholar
  4. 4.
    Geeraerts T, Launey Y, Martin L, Pottecher J, Vigue B, Duranteau J, Benhamou D (2007) Ultrasonography of the optic nerve sheath may be useful for detecting raised intracranial pressure after severe brain injury. Intensive Care Med 33:1704–1711.  https://doi.org/10.1007/s00134-007-0797-6 CrossRefPubMedGoogle Scholar
  5. 5.
    Geeraerts T, Merceron S, Benhamou D, Vigue B, Duranteau J (2008) Non-invasive assessment of intracranial pressure using ocular sonography in neurocritical care patients. Intensive Care Med 34:2062–2067.  https://doi.org/10.1007/s00134-008-1149-x CrossRefPubMedGoogle Scholar
  6. 6.
    Lochner P, Leone MA, Coppo L, Nardone R, Zedde ML, Cantello R, Brigo F (2016) B-mode transorbital ultrasononography for the diagnosis of acute optic neuritis. A systematic review. Clin Neurophysiol 127:803–809.  https://doi.org/10.1016/j.clinph.2015.05.005 CrossRefPubMedGoogle Scholar
  7. 7.
    Rohr A et al (2010) MR imaging of the optic nerve sheath in patients with craniospinal hypotension. AJNR Am J Neuroradiol 31:1752–1757.  https://doi.org/10.3174/ajnr.A2120 CrossRefPubMedGoogle Scholar
  8. 8.
    Wilson MH, Wright A, Imray CH (2014) Intracranial pressure at altitude. High Alt Med Biol 15:123–132.  https://doi.org/10.1089/ham.2013.1151 CrossRefPubMedGoogle Scholar
  9. 9.
    Hansen HC, Helmke K (1997) Validation of the optic nerve sheath response to changing cerebrospinal fluid pressure: ultrasound findings during intrathecal infusion tests. J Neurosurg 87:34–40.  https://doi.org/10.3171/jns.1997.87.1.0034 CrossRefPubMedGoogle Scholar
  10. 10.
    Helmke K, Hansen HC (1996) Fundamentals of transorbital sonographic evaluation of optic nerve sheath expansion under intracranial hypertension II. Patient study. Pediatr Radiol 26:706–710CrossRefGoogle Scholar
  11. 11.
    Liu D, Li Z, Zhang X, Zhao L, Jia J, Sun F, Wang Y, Ma D, Wei W (2017) Assessment of intracranial pressure with ultrasonographic retrobulbar optic nerve sheath diameter measurement. BMC Neurol 17:188.  https://doi.org/10.1186/s12883-017-0964-5 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lochner P et al (2019) Simulation and experimental characterization of lateral imaging resolution of ultrasound systems and assessment of system suitability for acoustic optic nerve sheath diameter measurement. J Neuroimaging 29:34–41.  https://doi.org/10.1111/jon.12578 CrossRefPubMedGoogle Scholar
  13. 13.
    Fowlkes JB, Holland CK (2000) Mechanical bioeffects from diagnostic ultrasound: AIUM consensus statements. American Institute of Ultrasound in Medicine. J Ultrasound Med 19:69–72CrossRefGoogle Scholar
  14. 14.
    Ballantyne SA, O'Neill G, Hamilton R, Hollman AS (2002) Observer variation in the sonographic measurement of optic nerve sheath diameter in normal adults. Eur J Ultrasound 15:145–149CrossRefGoogle Scholar
  15. 15.
    Bauerle J, Lochner P, Kaps M, Nedelmann M (2012) Intra- and interobsever reliability of sonographic assessment of the optic nerve sheath diameter in healthy adults. J Neuroimaging 22:42–45.  https://doi.org/10.1111/j.1552-6569.2010.00546.x CrossRefPubMedGoogle Scholar
  16. 16.
    Lochner P, Coppo L, Cantello R, Nardone R, Naldi A, Leone MA, Brigo F (2016) Intra- and interobserver reliability of transorbital sonographic assessment of the optic nerve sheath diameter and optic nerve diameter in healthy adults. J Ultrasound 19:41–45.  https://doi.org/10.1007/s40477-014-0144-z CrossRefPubMedGoogle Scholar
  17. 17.
    Copetti R, Cattarossi L (2009) Optic nerve ultrasound: artifacts and real images. Intensive Care Med 35:1488–1489; author reply 1490-1481.  https://doi.org/10.1007/s00134-009-1494-4 CrossRefPubMedGoogle Scholar
  18. 18.
    Bauerle J, Schuchardt F, Schroeder L, Egger K, Weigel M, Harloff A (2013) Reproducibility and accuracy of optic nerve sheath diameter assessment using ultrasound compared to magnetic resonance imaging. BMC Neurol 13:187.  https://doi.org/10.1186/1471-2377-13-187 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Helmke K, Hansen HC (1996) Fundamentals of transorbital sonographic evaluation of optic nerve sheath expansion under intracranial hypertension. I. Experimental study. Pediatr Radiol 26:701–705CrossRefGoogle Scholar
  20. 20.
    Krogias C, Ayzenberg I, Schroeder C, Gruter T, Gold R, Yoon MS (2016) Transorbital sonography in CIDP patients: no evidence for optic nerve hypertrophy. J Neurol Sci 362:206–208.  https://doi.org/10.1016/j.jns.2016.01.049 CrossRefPubMedGoogle Scholar
  21. 21.
    Topcuoglu MA, Arsava EM, Bas DF, Kozak HH (2015) Transorbital ultrasonographic measurement of optic nerve sheath diameter in brain death. J Neuroimaging 25:906–909.  https://doi.org/10.1111/jon.12233 CrossRefPubMedGoogle Scholar
  22. 22.
    Tayal VS, Neulander M, Norton HJ, Foster T, Saunders T, Blaivas M (2007) Emergency department sonographic measurement of optic nerve sheath diameter to detect findings of increased intracranial pressure in adult head injury patients. Ann Emerg Med 49:508–514.  https://doi.org/10.1016/j.annemergmed.2006.06.040 CrossRefPubMedGoogle Scholar
  23. 23.
    Bauerle J, Nedelmann M (2011) Sonographic assessment of the optic nerve sheath in idiopathic intracranial hypertension. J Neurol 258:2014–2019.  https://doi.org/10.1007/s00415-011-6059-0 CrossRefPubMedGoogle Scholar
  24. 24.
    Chen LM, Wang LJ, Hu Y, Jiang XH, Wang YZ, Xing YQ (2019) Ultrasonic measurement of optic nerve sheath diameter: a non-invasive surrogate approach for dynamic, real-time evaluation of intracranial pressure. Br J Ophthalmol 103:437–441.  https://doi.org/10.1136/bjophthalmol-2018-312934 CrossRefPubMedGoogle Scholar
  25. 25.
    Ertl M, Aigner R, Krost M, Karnasova Z, Muller K, Naumann M, Schlachetzki F (2017) Measuring changes in the optic nerve sheath diameter in patients with idiopathic normal-pressure hydrocephalus: a useful diagnostic supplement to spinal tap tests. Eur J Neurol 24:461–467.  https://doi.org/10.1111/ene.13225 CrossRefPubMedGoogle Scholar
  26. 26.
    Naldi A et al (2019) Ultrasonography monitoring of optic nerve sheath diameter and retinal vessels in patients with cerebral hemorrhage. J Neuroimaging.  https://doi.org/10.1111/jon.12604 CrossRefGoogle Scholar
  27. 27.
    Skoloudik D et al (2011) Distal enlargement of the optic nerve sheath in the hyperacute stage of intracerebral haemorrhage. Br J Ophthalmol 95:217–221.  https://doi.org/10.1136/bjo.2009.172890 CrossRefPubMedGoogle Scholar
  28. 28.
    Yesilaras M, Kilic TY, Yesilaras S, Atilla OD, Oncel D, Camlar M (2017) The diagnostic and prognostic value of the optic nerve sheath diameter on CT for diagnosis spontaneous subarachnoid hemorrhage. Am J Emerg Med 35:1408–1413.  https://doi.org/10.1016/j.ajem.2017.04.022 CrossRefPubMedGoogle Scholar
  29. 29.
    Bauerle J, Niesen WD, Egger K, Buttler KJ, Reinhard M (2016) Enlarged optic nerve sheath in aneurysmal subarachnoid hemorrhage despite normal intracranial pressure. J Neuroimaging 26:194–196.  https://doi.org/10.1111/jon.12287 CrossRefPubMedGoogle Scholar
  30. 30.
    Gokcen E, Caltekin I, Savrun A, Korkmaz H, Savrun ST, Yildirim G (2017) Alterations in optic nerve sheath diameter according to cerebrovascular disease sub-groups. Am J Emerg Med 35:1607–1611.  https://doi.org/10.1016/j.ajem.2017.04.073 CrossRefPubMedGoogle Scholar
  31. 31.
    D Amico D, Curone M, Ciasca P, Cammarata G, Melzi L, Bussone G, Bianchi Marzoli S (2013) Headache prevalence and clinical features in patients with idiopathic intracranial hypertension (IIH). Neurol Sci 34(Suppl 1):S147–S149.  https://doi.org/10.1007/s10072-013-1388-7 CrossRefPubMedGoogle Scholar
  32. 32.
    Friedman DI, Liu GT, Digre KB (2013) Revised diagnostic criteria for the pseudotumor cerebri syndrome in adults and children. Neurology 81:1159–1165.  https://doi.org/10.1212/WNL.0b013e3182a55f17 CrossRefPubMedGoogle Scholar
  33. 33.
    Raoof N, Sharrack B, Pepper IM, Hickman SJ (2011) The incidence and prevalence of idiopathic intracranial hypertension in Sheffield, UK. Eur J Neurol 18:1266–1268.  https://doi.org/10.1111/j.1468-1331.2011.03372.x CrossRefPubMedGoogle Scholar
  34. 34.
    Lochner P, Nardone R, Tezzon F, Coppo L, Brigo F (2013) Optic nerve sonography to monitor treatment efficacy in idiopathic intracranial hypertension: a case report. J Neuroimaging 23:533–534.  https://doi.org/10.1111/jon.12005 CrossRefPubMedGoogle Scholar
  35. 35.
    Lochner P, Brigo F, Zedde ML, Sanguigni S, Coppo L, Nardone R, Naldi A, Sola D, Stolz E (2016) Feasibility and usefulness of ultrasonography in idiopathic intracranial hypertension or secondary intracranial hypertension. BMC Neurol 16:85.  https://doi.org/10.1186/s12883-016-0594-3 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lochner P et al (2018) B-mode transorbital ultrasonography for the diagnosis of idiopathic intracranial hypertension: a systematic review and meta-analysis. Ultraschall Med.  https://doi.org/10.1055/a-0719-4903 PubMedGoogle Scholar
  37. 37.
    Lochner P, Fassbender K, Lesmeister M, Nardone R, Orioli A, Brigo F, Stolz E (2018) Ocular ultrasound for monitoring pseudotumor cerebri syndrome. J Neurol 265:356–361.  https://doi.org/10.1007/s00415-017-8699-1 CrossRefPubMedGoogle Scholar
  38. 38.
    Headache Classification Committee of the International Headache Society (IHS) (2018) The international classification of headache disorders, 3rd edition. Cephalalgia 38:1–211.  https://doi.org/10.1177/0333102417738202 CrossRefGoogle Scholar
  39. 39.
    Dubost C, Le Gouez A, Zetlaoui PJ, Benhamou D, Mercier FJ, Geeraerts T (2011) Increase in optic nerve sheath diameter induced by epidural blood patch: a preliminary report. Br J Anaesth 107:627–630.  https://doi.org/10.1093/bja/aer186 CrossRefPubMedGoogle Scholar
  40. 40.
    Fugate JE, Claassen DO, Cloft HJ, Kallmes DF, Kozak OS, Rabinstein AA (2010) Posterior reversible encephalopathy syndrome: associated clinical and radiologic findings. Mayo Clin Proc 85:427–432.  https://doi.org/10.4065/mcp.2009.0590 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lee VH, Wijdicks EF, Manno EM, Rabinstein AA (2008) Clinical spectrum of reversible posterior leukoencephalopathy syndrome. Arch Neurol 65:205–210.  https://doi.org/10.1001/archneurol.2007.46 CrossRefPubMedGoogle Scholar
  42. 42.
    Uchino M, Haga D, Nomoto J, Mito T, Kuramitsu T (2007) Brainstem involvement in hypertensive encephalopathy: a report of two cases and literature review. Eur Neurol 57:223–226.  https://doi.org/10.1159/000100015 CrossRefPubMedGoogle Scholar
  43. 43.
    Caputo ND, Fraser RM, Abdulkarim J (2012) Posterior reversible encephalopathy syndrome presenting as papilledema. Am J Emerg Med 30:835 e835-837.  https://doi.org/10.1016/j.ajem.2011.03.016 CrossRefPubMedGoogle Scholar
  44. 44.
    Lochner P, Mader C, Nardone R, Cantello R, Orioli A, Brigo F (2014) Usefulness of ultrasonography in posterior reversible encephalopathy syndrome. Neurol Sci 35:475–477.  https://doi.org/10.1007/s10072-013-1562-y CrossRefPubMedGoogle Scholar
  45. 45.
    Lochner P, Nardone R, Brigo F, Tamber MS, Zuccoli G (2015) The diagnosis of posterior reversible encephalopathy syndrome. Lancet Neurol 14:1074–1075.  https://doi.org/10.1016/S1474-4422(15)00256-2 CrossRefPubMedGoogle Scholar
  46. 46.
    Nabeta HW et al (2014) Accuracy of noninvasive intraocular pressure or optic nerve sheath diameter measurements for predicting elevated intracranial pressure in cryptococcal meningitis. Open Forum Infect Dis 1:ofu093.  https://doi.org/10.1093/ofid/ofu093 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sangani SV, Parikh S (2015) Can sonographic measurement of optic nerve sheath diameter be used to detect raised intracranial pressure in patients with tuberculous meningitis? A prospective observational study. Indian J Radiol Imaging 25:173–176.  https://doi.org/10.4103/0971-3026.155869 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lawley JS, Alperin N, Bagci AM, Lee SH, Mullins PG, Oliver SJ, Macdonald JH (2014) Normobaric hypoxia and symptoms of acute mountain sickness: elevated brain volume and intracranial hypertension. Ann Neurol 75:890–898.  https://doi.org/10.1002/ana.24171 CrossRefPubMedGoogle Scholar
  49. 49.
    Ross RT (1985) The random nature of cerebral mountain sickness. Lancet 1:990–991CrossRefGoogle Scholar
  50. 50.
    Lawley JS, Oliver SJ, Mullins P, Morris D, Junglee NA, Jelleyman C, Macdonald JH (2012) Optic nerve sheath diameter is not related to high altitude headache: a randomized controlled trial. High Alt Med Biol 13:193–199.  https://doi.org/10.1089/ham.2012.1019 CrossRefPubMedGoogle Scholar
  51. 51.
    Strapazzon G, Brugger H, Dal Cappello T, Procter E, Hofer G, Lochner P (2014) Factors associated with optic nerve sheath diameter during exposure to hypobaric hypoxia. Neurology 82:1914–1918.  https://doi.org/10.1212/WNL.0000000000000457 CrossRefPubMedGoogle Scholar
  52. 52.
    Sutherland AI, Morris DS, Owen CG, Bron AJ, Roach RC (2008) Optic nerve sheath diameter, intracranial pressure and acute mountain sickness on Mount Everest: a longitudinal cohort study. Br J Sports Med 42:183–188.  https://doi.org/10.1136/bjsm.2007.045286 CrossRefPubMedGoogle Scholar
  53. 53.
    Fagenholz PJ, Gutman JA, Murray AF, Noble VE, Camargo CA Jr, Harris NS (2009) Optic nerve sheath diameter correlates with the presence and severity of acute mountain sickness: evidence for increased intracranial pressure. J Appl Physiol 106:1207–1211.  https://doi.org/10.1152/japplphysiol.01188.2007 CrossRefPubMedGoogle Scholar
  54. 54.
    Lochner P, Falla M, Brigo F, Pohl M, Strapazzon G (2015) Ultrasonography of the optic nerve sheath diameter for diagnosis and monitoring of acute mountain sickness: a systematic review. High Alt Med Biol 16:195–203.  https://doi.org/10.1089/ham.2014.1127 CrossRefPubMedGoogle Scholar
  55. 55.
    Lee HC, Lee WJ, Dho YS, Cho WS, Kim YH, Park HP (2018) Optic nerve sheath diameter based on preoperative brain computed tomography and intracranial pressure are positively correlated in adults with hydrocephalus. Clin Neurol Neurosurg 167:31–35.  https://doi.org/10.1016/j.clineuro.2018.02.012 CrossRefPubMedGoogle Scholar
  56. 56.
    Brzezinska R, Schumacher R (2002) Diagnosis of elevated intracranial pressure in children with shunt under special consideration of transglobe sonography of the optic nerve. Ultraschall Med 23:325–332.  https://doi.org/10.1055/s-2002-35050 CrossRefPubMedGoogle Scholar
  57. 57.
    Newman WD, Hollman AS, Dutton GN, Carachi R (2002) Measurement of optic nerve sheath diameter by ultrasound: a means of detecting acute raised intracranial pressure in hydrocephalus. Br J Ophthalmol 86:1109–1113CrossRefGoogle Scholar
  58. 58.
    Foroozan R, Buono LM, Savino PJ, Sergott RC (2002) Acute demyelinating optic neuritis. Curr Opin Ophthalmol 13:375–380CrossRefGoogle Scholar
  59. 59.
    Youl BD et al (1991) The pathophysiology of acute optic neuritis. An association of gadolinium leakage with clinical and electrophysiological deficits. Brain 114(Pt 6):2437–2450CrossRefGoogle Scholar
  60. 60.
    Dehghani A, Giti M, Akhlaghi MR, Karami M, Salehi F (2012) Ultrasonography in distinguishing optic neuritis from nonarteritic anterior ischemic optic neuropathy. Adv Biomed Res 1:3.  https://doi.org/10.4103/2277-9175.94425 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Elvin A, Andersson T, Soderstrom M (1998) Optic neuritis. Doppler ultrasonography compared with MR and correlated with visual evoked potential assessments. Acta Radiol 39:243–248PubMedGoogle Scholar
  62. 62.
    Gerling J, Janknecht P, Hansen LL, Kommerell G (1997) Diameter of the optic nerve in idiopathic optic neuritis and in anterior ischemic optic neuropathy. Int Ophthalmol 21:131–135CrossRefGoogle Scholar
  63. 63.
    Karami M, Janghorbani M, Dehghani A, Riahinejad M (2012) Orbital Doppler evaluation of blood flow velocities in optic neuritis. Korean J Ophthalmol 26:116–122.  https://doi.org/10.3341/kjo.2012.26.2.116 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Lochner P et al (2014) Transorbital sonography in acute optic neuritis: a case-control study. AJNR Am J Neuroradiol 35:2371–2375.  https://doi.org/10.3174/ajnr.A4051 CrossRefPubMedGoogle Scholar
  65. 65.
    Neroev VV, Karlova IZ, Zaitseva OV, Kruzhkova GV, Boiko AN (2001) Role of ultrasonic B-scanning in differential diagnosis and prognosis of the course of optic neuritis. Vestn oftalmol 117:25–29PubMedGoogle Scholar
  66. 66.
    Stefanovic IB, Jovanovic M, Krnjaja BD, Veselinovic D, Jovanovic P (2010) Influence of retrobulbar neuritis and papillitis on echographically measured optic nerve diameter. Vojnosanit Pregl 67:32–35CrossRefGoogle Scholar
  67. 67.
    Block HS, Biller J (2014) Neurology of pregnancy. Handb Clin Neurol 121:1595–1622.  https://doi.org/10.1016/B978-0-7020-4088-7.00105-X CrossRefPubMedGoogle Scholar
  68. 68.
    Dubost C, Le Gouez A, Jouffroy V, Roger-Christoph S, Benhamou D, Mercier FJ, Geeraerts T (2012) Optic nerve sheath diameter used as ultrasonographic assessment of the incidence of raised intracranial pressure in preeclampsia: a pilot study. Anesthesiology 116:1066–1071.  https://doi.org/10.1097/ALN.0b013e318246ea1a CrossRefPubMedGoogle Scholar
  69. 69.
    Brzan Simenc G, Ambrozic J, Prokselj K, Tul N, Cvijic M, Mirkovic T, Lucovnik M (2018) Ocular ultrasonography for diagnosing increased intracranial pressure in patients with severe preeclampsia. Int J Obstet Anesth 36:49–55.  https://doi.org/10.1016/j.ijoa.2018.06.005 CrossRefPubMedGoogle Scholar
  70. 70.
    Bernal W, Wendon J (1999) Acute liver failure; clinical features and management. Eur J Gastroenterol Hepatol 11:977–984CrossRefGoogle Scholar
  71. 71.
    Ware AJ, D’Agostino AN, Combes B (1971) Cerebral edema: a major complication of massive hepatic necrosis. Gastroenterology 61:877–884CrossRefGoogle Scholar
  72. 72.
    Karvellas CJ, Fix OK, Battenhouse H, Durkalski V, Sanders C, Lee WM, Group USALFS (2014) Outcomes and complications of intracranial pressure monitoring in acute liver failure: a retrospective cohort study. Crit Care Med 42:1157–1167.  https://doi.org/10.1097/CCM.0000000000000144 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Peck M, Wendon J, Sizer E, Auzinger G, Bernal W (2010) Intracranial pressure monitoring in acute liver failure: a review of 10 years experience. Crit Care 14:P542CrossRefGoogle Scholar
  74. 74.
    Vaquero J et al (2005) Complications and use of intracranial pressure monitoring in patients with acute liver failure and severe encephalopathy. Liver Transpl 11:1581–1589.  https://doi.org/10.1002/lt.20625 CrossRefPubMedGoogle Scholar
  75. 75.
    Rajajee V, Williamson CA, Fontana RJ, Courey AJ, Patil PG (2018) Noninvasive intracranial pressure assessment in acute liver failure. Neurocrit Care 29:280–290.  https://doi.org/10.1007/s12028-018-0540-x CrossRefPubMedGoogle Scholar
  76. 76.
    Ganschow R, Nolkemper D, Helmke K, Harps E, Commentz JC, Broering DC, Pothmann W, Rogiers X, Hellwege HH, Burdelski M (2000) Intensive care management after pediatric liver transplantation: a single-center experience. Pediatr Transplant 4:273–279CrossRefGoogle Scholar
  77. 77.
    Chelly J et al (2016) The optic nerve sheath diameter as a useful tool for early prediction of outcome after cardiac arrest: a prospective pilot study. Resuscitation 103:7–13.  https://doi.org/10.1016/j.resuscitation.2016.03.006 CrossRefPubMedGoogle Scholar
  78. 78.
    Chae MK et al (2016) Better prognostic value with combined optic nerve sheath diameter and grey-to-white matter ratio on initial brain computed tomography in post-cardiac arrest patients. Resuscitation 104:40–45.  https://doi.org/10.1016/j.resuscitation.2016.04.001 CrossRefPubMedGoogle Scholar
  79. 79.
    Ueda T, Ishida E, Kojima Y, Yoshikawa S, Yonemoto H (2015) Sonographic optic nerve sheath diameter: a simple and rapid tool to assess the neurologic prognosis after cardiac arrest. J Neuroimaging 25:927–930.  https://doi.org/10.1111/jon.12246 CrossRefPubMedGoogle Scholar
  80. 80.
    Ertl M, Weber S, Hammel G, Schroeder C, Krogias C (2018) Transorbital sonography for early prognostication of hypoxic-ischemic encephalopathy after cardiac arrest. J Neuroimaging 28:542–548.  https://doi.org/10.1111/jon.12528 CrossRefPubMedGoogle Scholar
  81. 81.
    You Y et al (2018) Relationship between time related serum albumin concentration, optic nerve sheath diameter, cerebrospinal fluid pressure, and neurological prognosis in cardiac arrest survivors. Resuscitation 131:42–47.  https://doi.org/10.1016/j.resuscitation.2018.08.003 CrossRefPubMedGoogle Scholar
  82. 82.
    Citerio G, Vascotto E, Villa F, Celotti S, Pesenti A (2001) Induced abdominal compartment syndrome increases intracranial pressure in neurotrauma patients: a prospective study. Crit Care Med 29:1466–1471CrossRefGoogle Scholar
  83. 83.
    Cooke SJ, Paterson-Brown S (2001) Association between laparoscopic abdominal surgery and postoperative symptoms of raised intracranial pressure. Surg Endosc 15:723–725CrossRefGoogle Scholar
  84. 84.
    Ficarra V et al (2009) Retropubic, laparoscopic, and robot-assisted radical prostatectomy: a systematic review and cumulative analysis of comparative studies. Eur Urol 55:1037–1063.  https://doi.org/10.1016/j.eururo.2009.01.036 CrossRefPubMedGoogle Scholar
  85. 85.
    Kim MS, Bai SJ, Lee JR, Choi YD, Kim YJ, Choi SH (2014) Increase in intracranial pressure during carbon dioxide pneumoperitoneum with steep trendelenburg positioning proven by ultrasonographic measurement of optic nerve sheath diameter. J Endourol 28:801–806.  https://doi.org/10.1089/end.2014.0019 CrossRefPubMedGoogle Scholar
  86. 86.
    Robba C et al (2016) Effects of pneumoperitoneum and Trendelenburg position on intracranial pressure assessed using different non-invasive methods. Br J Anaesth 117:783–791.  https://doi.org/10.1093/bja/aew356 CrossRefPubMedGoogle Scholar
  87. 87.
    Kim EJ, Koo BN, Choi SH, Park K, Kim MS (2018) Ultrasonographic optic nerve sheath diameter for predicting elevated intracranial pressure during laparoscopic surgery: a systematic review and meta-analysis. Surg Endosc 32:175–182.  https://doi.org/10.1007/s00464-017-5653-3 CrossRefPubMedGoogle Scholar
  88. 88.
    Ertl M, Schierling W, Kasprzak P, Schomig B, Bruckl C, Schlachetzki F, Pfister K (2015) Optic nerve sheath diameter measurement to identify high-risk patients for spinal ischemia after endovascular thoracoabdominal aortic aneurysm repair. J Neuroimaging 25:910–915.  https://doi.org/10.1111/jon.12234 CrossRefPubMedGoogle Scholar
  89. 89.
    Houze-Cerfon CH, Bounes V, Guemon J, Le Gourrierec T, Geeraerts T (2019) Quality and feasibility of sonographic measurement of the optic nerve sheath diameter to estimate the risk of raised intracranial pressure after traumatic brain injury in prehospital setting. Prehosp Emerg Care 23:277–283.  https://doi.org/10.1080/10903127.2018.1501444 CrossRefPubMedGoogle Scholar
  90. 90.
    Maissan IM, Verbaan LA, van den Berg M, Houmes RJ, Stolker RJ, den Hartog D (2018) Helicopter transportation increases intracranial pressure: a proof-of-principle study. Air Med J 37:249–252.  https://doi.org/10.1016/j.amj.2018.02.010 CrossRefPubMedGoogle Scholar
  91. 91.
    Meiburger KM, Acharya UR, Molinari F (2018) Automated localization and segmentation techniques for B-mode ultrasound images: a review. Comput Biol Med 92:210–235.  https://doi.org/10.1016/j.compbiomed.2017.11.018 CrossRefPubMedGoogle Scholar
  92. 92.
    Gerber S et al (2017) Automatic estimation of the optic nerve sheath diameter from ultrasound images imaging for patient-customized simulations and systems for point-of-care ultrasound : International Workshops, BIVPCS 2017 and POCUS 2017, held in conjunction with MICCAI 2017, Quebec City, QC 10549:113–120  https://doi.org/10.1007/978-3-319-67552-7_14 CrossRefGoogle Scholar

Copyright information

© Fondazione Società Italiana di Neurologia 2019

Authors and Affiliations

  1. 1.Department of NeurologySaarland University Medical CenterHomburgGermany
  2. 2.Division of Neurosurgery, Department of Clinical NeurosciencesCambridge UniversityCambridgeUK
  3. 3.Department of Neurosciences “Rita Levi Montalcini”University of TurinTurinItaly
  4. 4.Anesthesia and Intensive Care, San Martino Policlinico HospitalIRCCS for Oncology and NeurosciencesGenoaItaly
  5. 5.Department of Surgical Sciences and Integrated DiagnosticsUniversity of GenoaGenoaItaly

Personalised recommendations