Neurological Sciences

, Volume 40, Issue 12, pp 2565–2572 | Cite as

Genetic and lifestyle predictors of ischemic stroke severity and outcome

  • Ivana CelapEmail author
  • Nora Nikolac Gabaj
  • Vida Demarin
  • Vanja Basic Kes
  • Ana-Maria Simundic
Original Article



Different models that include clinical variables and blood markers have been investigated to predict acute ischemic stroke treatment course and recovery.


The aim of the study was to investigate associations between lipid levels, lifestyle factors, hemostatic (F5, F2, SERPINE1, F13A1, and FGB), and atherogenic (APOA5 and ACE) gene variants and acute ischemic stroke (AIS) severity.

Materials and methods

This study included 250 patients with AIS in which F5, F2, SERPINE1, F13A1, FGB, APOA5, and ACE genotypes were determined. Total cholesterol (TC), high-density cholesterol, low-density cholesterol, and triglycerides concentrations were measured within 24 h of the AIS onset. Examination of the neurological deficit was done using National Institutes of Health Stroke Scale/Score (NIHSS).


APOA5 genotype [TC + CC] was more frequent (P = 0.026) in patients with the NIHSS score ≥ 21. Univariate regression analysis has shown that triglycerides (OR 0.55, 95% CI 0.34–0.91; P = 0.019), obesity (0.28, 95% CI 0.10–0.73; P = 0.010), age (OR 1.08, 95% CI 1.04–1.13; P < 0.001), and APOA5 genotype (TC + CC) (OR 2.40, 95% CI 1.10–5.25; P = 0.034) are significantly associated with a severe stroke. When all variables were included in model age (OR 1.06, 95% CI 1.01–1.11; P = 0.018), obesity (OR 0.25, 95% CI 0.08–0.77; P = 0.016) and APOA5 genotype (TC + CC) (OR 3.26, 95% CI 1.29–8.23; P = 0.012) remained significant for the risk of severe AIS.


APOA5 genotype (TC + CC), age, and obesity could be used as prognostic risk factors for a very severe stroke (NIHSS ≥ 21).


APOA5 variant Stroke severity Risk factors Triglycerides 


Compliance with ethical standards

Sestre milosrdnice University Hospital Center ethics committee approved the study and all participants signed informed consent.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10072_2019_4006_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 15 kb)


  1. 1.
    Harvey RL (2015) Predictors of functional outcome following stroke. Phys Med Rehabil Clin N Am 26:583–598PubMedGoogle Scholar
  2. 2.
    Veerbeek JM, Kwakkel G, Van Wegen EEH, Ket JCF, Heymans MW (2011) Early prediction of outcome of activities of daily living after stroke: a systematic review. Stroke 42:1482–1488PubMedGoogle Scholar
  3. 3.
    Woldag H, Gerhold LL, de Groot M, Wohlfart K, Wagner A, Hummelsheim H (2006) Early prediction of functional outcome after stroke. Brain Inj 20:1047–1052PubMedGoogle Scholar
  4. 4.
    Bentsen L, Christensen L, Christensen A, Christensen H (2014) Outcome and risk factors presented in old patients above 80 years of age versus younger patients after ischemic stroke. J Stroke Cerebrovasc Dis 23:1944–1948PubMedGoogle Scholar
  5. 5.
    Rojas JI, Zurrú MC, Romano M, Patrucco L, Cristiano E (2007) Acute ischemic stroke and transient ischemic attack in the very old-risk factor profile and stroke subtype between patients older than 80 years and patients aged less than 80 years. Eur J Neurol 14:895–899PubMedGoogle Scholar
  6. 6.
    Sato S, Toyoda K, Uehara T, Toratani N, Yokota C, Moriwaki H, Naritomi H, Minematsu K (2008) Baseline NIH Stroke Scale Score predicting outcome in anterior and posterior circulation strokes. Neurology. 70:2371–2377PubMedGoogle Scholar
  7. 7.
    Osei E, Fonville S, Zandbergen AAM, Koudstaal PJ, Dippel DWJ, den Hertog HM (2017) Glucose in prediabetic and diabetic range and outcome after stroke. Acta Neurol Scand 135:170–175PubMedGoogle Scholar
  8. 8.
    Tanaka R, Ueno Y, Miyamoto N, Yamashiro K, Tanaka Y, Shimura H, Hattori N, Urabe T (2013) Impact of diabetes and prediabetes on the short-term prognosis in patients with acute ischemic stroke. J Neurol Sci 332:45–50PubMedGoogle Scholar
  9. 9.
    Tziomalos K, Giampatzis V, Bouziana SD, Spanou M, Kostaki S, Papadopoulou M, Angelopoulou SM, Tsopozidi M, Savopoulos C, Hatzitolios AI (2017) Prognostic significance of major lipids in patients with acute ischemic stroke. Metab Brain Dis 32:395–400PubMedGoogle Scholar
  10. 10.
    Jain M, Jain A, Yerragondu N, Brown RD, Rabinstein A, Jahromi BS et al (2013) The triglyceride paradox in stroke survivors: a prospective study. Neurosci J 2013:870608PubMedPubMedCentralGoogle Scholar
  11. 11.
    Deng Q, Li S, Zhang H, Wang H, Gu Z, Zuo L, Wang L, Yan F (2019) Association of serum lipids with clinical outcome in acute ischaemic stroke: a systematic review and meta-analysis. J Clin Neurosci 59:236–244PubMedGoogle Scholar
  12. 12.
    Bevan S, Traylor M, Adib-Samii P, Malik R, Paul NLM, Jackson C, Farrall M, Rothwell PM, Sudlow C, Dichgans M, Markus HS (2012) Genetic heritability of ischemic stroke and the contribution of previously reported candidate gene and genomewide associations. Stroke. 43:3161–3167PubMedGoogle Scholar
  13. 13.
    Babu MS, Prabha TS, Kaul S, Al-Hazzani A, Shafi G, Roy S et al (2012) Association of genetic variants of fibrinolytic system with stroke and stroke subtypes. Gene. 495:76–80PubMedGoogle Scholar
  14. 14.
    Krajcoviechova A, Wohlfahrt P, Mayer O, Vanek J, Hajkova J, Hlinovsky D et al (2015) Tobacco smoking strongly modifies the association of prothrombin G20210A with undetermined stroke: consecutive survivors and population-based controls. Atherosclerosis 240:446–452PubMedGoogle Scholar
  15. 15.
    Tasdemir S, Erdem HB, Sahin I, Ozel L, Ozdemir G, Eroz R, Tatar A (2016) Correlation with platelet parameters and genetic markers of thrombophilia panel (factor II g.20210G>A, factor V Leiden, MTHFR (C677T, A1298C), PAI-1, β-fibrinogen, factor XIIIA (V34L), glycoprotein IIIa (L33P)) in ischemic strokes. NeuroMolecular Med 18:170–176PubMedGoogle Scholar
  16. 16.
    They-They TP, Battas O, Nadifi S (2013) Synergistic effect of MTHFR C677T and F2 G20210A polymorphisms on ischemic stroke. Neurosci Bull 29:725–730PubMedPubMedCentralGoogle Scholar
  17. 17.
    Atadzhanov M, Mwaba MH, Mukomena PN, Lakhi S, Rayaprolu S, Ross OA et al (2013) Association of the APOE, MTHFR and ACE genes polymorphisms and stroke in Zambian patients. Neurol Int 5:69–72Google Scholar
  18. 18.
    Markoula S, Giannopoulos S, Kostoulas C, Tatsioni A, Bouba I, Maranis S, Georgiou I, Kyritsis AP (2011) Gender association of the angiotensin-converting enzyme gene with ischaemic stroke. J Renin-Angiotensin-Aldosterone Syst 12:510–515PubMedGoogle Scholar
  19. 19.
    Malueka RG, Dwianingsih EK, Sutarni S, Bawono RG, Bayuangga HF, Gofir A et al (2017) The D allele of the angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism is associated with worse functional outcome of ischemic stroke. Int J Neurosci 7454:1–21Google Scholar
  20. 20.
    Martiskainen M, Oksala N, Pohjasvaara T, Kaste M, Oksala A, Karhunen PJ, Erkinjuntti T (2014) Βeta-fibrinogen gene promoter A -455 allele associated with poor longterm survival among 55-71 years old Caucasian women in Finnish stroke cohort. BMC Neurol 14:137PubMedPubMedCentralGoogle Scholar
  21. 21.
    Shemirani AH, Antalfi B, Pongrácz E, Mezei ZA, Bereczky Z, Csiki Z (2014) Factor XIII-A subunit Val34Leu polymorphism in fatal atherothrombotic ischemic stroke. Blood Coagul Fibrinolysis 25:364–368PubMedGoogle Scholar
  22. 22.
    Saracevic A, Simundic AM, Celap I, Luzanic V (2013) Angiotensin-converting enzyme insertion/deletion polymorphism genotyping error: the cause and a possible solution to the problem. Mol Biol Rep 40:4459–4463PubMedGoogle Scholar
  23. 23.
    Fonarow GC, Saver JL, Smith EE, Broderick JP, Kleindorfer DO, Sacco RL, Pan W, Olson DM, Hernandez AF, Peterson ED, Schwamm LH (2012) Relationship of National Institutes of Health Stroke scale to 30-day mortality in Medicare beneficiaries with acute ischemic Stroke. J Am Heart Assoc 1:42–50PubMedPubMedCentralGoogle Scholar
  24. 24.
    Ver HA (2011) The NIH stroke scale: a window into neurological status. Nursing Spectrum (Greater Chicago) 24:44–49Google Scholar
  25. 25.
    Kim M, Kim M, Yoo HJ, Lee E, Chae JS, Lee S-H et al (2017) A promoter variant of the APOA5 gene increases atherogenic LDL levels and arterial stiffness in hypertriglyceridemic patients. PLoS ONE 12:e0186693PubMedPubMedCentralGoogle Scholar
  26. 26.
    Mahrooz A, Zargari M, Ansari V, Makhlough A, Hashemi-Sooteh MB (2016) Association of APOA5 gene promoter region -1131T>C polymorphism (rs662799) to plasma triglyceride level in patients with type 2 diabetic nephropathy. J Clin Diagn Res 10:BC09–BC13PubMedPubMedCentralGoogle Scholar
  27. 27.
    Guardiola M, Cofán M, de Castro-Oros I, Cenarro A, Plana N, Talmud PJ, Masana L, Ros E, Civeira F, Ribalta J (2015) APOA5 variants predispose hyperlipidemic patients to atherogenic dyslipidemia and subclinical atherosclerosis. Atherosclerosis 240:98–104PubMedGoogle Scholar
  28. 28.
    Can Demirdöğen B, Şahin E, Türkanoğlu Özçelik A, Bek S, Demirkaya Ş, Adali O (2012) Apolipoprotein A5 polymorphisms in Turkish population: association with serum lipid profile and risk of ischemic stroke. Mol Biol Rep 39:10459–10468PubMedGoogle Scholar
  29. 29.
    Maasz A, Kisfali P, Jaromi L, Horvatovich K, Szolnoki Z, Csongei V, Safrany E, Sipeky C, Hadarits F, Melegh B (2008) Apolipoprotein A5 gene IVS3+G476A allelic variant confers susceptibility for development of ischemic stroke. Circ J 72:1065–1070PubMedGoogle Scholar
  30. 30.
    Simundic AM, Nikolac N, Topic E, Basic-Kes V, Demarin V (2008) Are serum lipids measured on stroke admission prognostic? Clin Chem Lab Med 46(8):1163–1167PubMedGoogle Scholar
  31. 31.
    Weir CJ, Sattar N, Walters MR, Lees KR (2003) Low triglyceride, not low cholesterol concentration, independently predicts poor outcome following acute stroke. Cerebrovasc Dis 16:76–82PubMedGoogle Scholar
  32. 32.
    Pikija S, Milevčić D, Trkulja V, Kidemet-Piskač S, Pavliček I, Sokol N (2006) Higher serum triglyceride level in patients with acute ischemic stroke is associated with lower infarct volume on CT brain scans. Eur Neurol 55:89–92PubMedGoogle Scholar
  33. 33.
    Perovic E, Mrdjen A, Harapin M, Simundic AM (2016) Short term changes of serum lipids in acute ischemic stroke. Clin Lab 62:2107–2113PubMedGoogle Scholar
  34. 34.
    Aparicio HJ, Himali JJ, Beiser AS, Davis-Plourde KL, Vasan RS, Kase CS et al (2017) Overweight, obesity, and survival after stroke in the Framingham heart study. J Am Heart Assoc 6:e004721PubMedPubMedCentralGoogle Scholar
  35. 35.
    Doehner W, Schenkel J, Anker SD, Springer J, Audebert H (2013) Overweight and obesity are associated with improved survival, functional outcome, and stroke recurrence after acute stroke or transient ischaemic attack: observations from the tempis trial. Eur Heart J 34:268–277PubMedGoogle Scholar
  36. 36.
    Jang SY, Shin Y II, Kim DY, Sohn MK, Lee J, Lee SG et al (2015) Effect of obesity on functional outcomes at 6 months post-stroke among elderly Koreans: a prospective multicentre study. BMJ Open 5:e008712PubMedPubMedCentralGoogle Scholar
  37. 37.
    Dehlendorff C, Andersen KK, Olsen TS (2014) Body mass index and death by stroke no obesity paradox. JAMA Neurol 71:978–984PubMedGoogle Scholar
  38. 38.
    Oesch L, Tatlisumak T, Arnold M, Sarikaya H (2017) Obesity paradox in stroke - myth or reality? A systematic review. PLoS ONE 12:e0171334PubMedPubMedCentralGoogle Scholar
  39. 39.
    Kissela BM, Khoury JC, Alwell K, Moomaw CJ, Woo D, Adeoye O, Flaherty ML, Khatri P, Ferioli S, de Los Rios la Rosa F, Broderick JP, Kleindorfer DO (2012) Age at stroke: temporal trends in stroke incidence in a large, biracial population. Neurology 79:1781–1787PubMedPubMedCentralGoogle Scholar
  40. 40.
    Kelly-Hayes M (2010) Influence of age and health behaviors on stroke risk: lessons from longitudinal studies. J Am Geriatr Soc 58:S325–S328PubMedPubMedCentralGoogle Scholar
  41. 41.
    Wang Y, Rudd AG, Wolfe CDA (2013) Age and ethnic disparities in incidence of stroke over time: the South London stroke register. Stroke 44:3298–3304PubMedGoogle Scholar
  42. 42.
    Roach REJ, Roshani S, Meijer K, Hamulyák K, Lijfering WM, Prins MH, Büller HR, Middeldorp S (2011) Risk of cardiovascular disease in double heterozygous carriers and homozygous carriers of F5 R506Q (factor V Leiden) and F2 (prothrombin) G20210A: a retrospective family cohort study. Br J Haem 153:134–136Google Scholar
  43. 43.
    Beye A, Pindur G (2017) Clinical significance of factor V Leiden and prothrombin G20210A-mutations in cerebral venous thrombosis - comparison with arterial ischemic stroke. Clin Hemorheol Microcirc 67:261–266PubMedGoogle Scholar
  44. 44.
    Herm J, Hoppe B, Siegerink B, Nolte CH, Koscielny J, Haeusler KG (2017) A prothrombotic score based on genetic polymorphisms of the hemostatic system differs in patients with ischemic stroke, myocardial infarction, or peripheral arterial occlusive disease. Front Cardiovasc Med 4:39PubMedPubMedCentralGoogle Scholar

Copyright information

© Fondazione Società Italiana di Neurologia 2019

Authors and Affiliations

  1. 1.Department of Clinical ChemistrySestre milosrdnice University Hospital CenterZagrebCroatia
  2. 2.Department of NeurologySestre milosrdnice University Hospital CenterZagrebCroatia
  3. 3.Department of Medical Laboratory DiagnosticsUniversity Hospital Sveti DuhZagrebCroatia
  4. 4.Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and BiochemistryUniversity of ZagrebZagrebCroatia

Personalised recommendations