Advertisement

Neurological Sciences

, Volume 40, Issue 12, pp 2529–2535 | Cite as

The association of low levels of nesfatin-1 and glucagon-like peptide-1 with oxidative stress in Parkinson’s disease

  • Gülser Karadaban EmirEmail author
  • Yasemin Ünal
  • Nigar Yılmaz
  • Kürsad Tosun
  • Gülnihal Kutlu
Original Article

Abstract

Aim

In Parkinson’s disease (PD), oxidative stress plays a substantial role in degeneration of dopaminergic neurons at the substantia nigra. Recent reports describe nesfatin-1 and glucagon-like peptide-1 (GLP-1) as molecules with neuroprotective property that relieve oxidative stress. In this study, we aimed to determine the blood levels of nesfatin-1, GLP-1 and oxidative stress status in patients with PD.

Material and method

Forty patients with PD, followed-up at the Department of Neurology of Mugla Sitki Kocman University Training and Research Hospital, were enrolled, as well as 40 age- and sex-matched participants as a control group. We determined and compared nesfatin-1, GLP-1, total antioxidant status (TAS), and total oxidant status (TOS) levels in patients with PD and control group.

Results

The mean GLP-1 and nesfatin-1 values of patients with PD were lower than those of the control group, whereas their mean TOS value was higher. The mean TAS values, on the other hand, did not reveal any significant difference between the patient and the control groups.

Conclusion

The lower nesfatin-1 and GLP-1 levels, in addition to higher TOS levels, in patients with PD compared to those of control group suggest that the neuroprotective effects of these molecules might be related to the oxidative processes. Further studies are required to search for the impact of abovenamed molecules on the treatment option and the likelihood that they may slow down disease progression.

Keywords

Parkinson’s disease Oxidative stress Nesfatin-1 GLP-1 

Notes

Acknowledgements

Muğla Sıtkı Koçman University Research Projects Coordination Office through Project Grant.

Number has granted this paper: (15/237)

Supplementary material

10072_2019_3975_MOESM1_ESM.pdf (153 kb)
ESM 1 (PDF 153 kb)
10072_2019_3975_MOESM2_ESM.PDF
ESM 2 (PDF 466 kb)
10072_2019_3975_MOESM3_ESM.docx (6.4 mb)
ESM 3 (DOCX 6519 kb)

References

  1. 1.
    Al Shahrani M, Heales S, Hargreaves I, Orford M (2017) Oxidative stress: mechanistic insights into inherited mitochondrial disorders and Parkinson’s disease. J Clin Med 27(11):6Google Scholar
  2. 2.
    Hauser DN, Hastings TG (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis 51:35–42CrossRefGoogle Scholar
  3. 3.
    Subramaniam SR, Chesselet MF (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol 106-107:17–32CrossRefGoogle Scholar
  4. 4.
    Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38:1103–1111CrossRefGoogle Scholar
  5. 5.
    Ece A, Kelekçi S, Kocamaz H, Hekimoğlu A, Balik H, Yolbaş I, Erel O (2008) Antioxidant enzyme activities, lipid peroxidation, and total antioxidant status in children with Henoch-Schönlein purpura. Clin Rheumatol 27(2):163–169CrossRefGoogle Scholar
  6. 6.
    Oh-I S, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K et al (2006) Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature. 443(7112):709–712CrossRefGoogle Scholar
  7. 7.
    Stengel A, Taché Y (2011) Minireview: nesfatin-1--an emerging new player in the brain-gut, endocrine, and metabolic axis. Endocrinology. 152(11):4033–4038CrossRefGoogle Scholar
  8. 8.
    Li C, Zhang F, Shi L, Zhang H, Tian Z, Xie J, Jiang H (2014) Nesfatin-1 decreases excitability of dopaminergic neurons in the substantia nigra. J Mol Neurosci 52(3):419–424CrossRefGoogle Scholar
  9. 9.
    Ayada C, Toru Ü, Korkut Y (2015) Nesfatin-1 and its effects on different systems. Hippokratia 19(1):4–10PubMedPubMedCentralGoogle Scholar
  10. 10.
    Xia Z, Wang G, Li H, Hu C, Wang Q, Li A, Zhao E, Shuai X, Wang J, Cai K, Tao K, Wang G (2015) Influence of bariatric surgery on the expression of nesfatin-1 in rats with type 2 diabetes mellitus. Curr Pharm Des 21(11):1464–1471CrossRefGoogle Scholar
  11. 11.
    Erfani S, Moghimi A, Aboutaleb N, Khaksari M (2018) Protective effects of Nesfatin-1 peptide on cerebral ischemia reperfusion injury via inhibition of neuronal cell death and enhancement of antioxidant defenses. Metab Brain Dis 34:79–85.  https://doi.org/10.1007/s11011-018-0323-2 CrossRefPubMedGoogle Scholar
  12. 12.
    Salcedo I, Tweedie D, Li Y, Greig NH (2012) Neuroprotective and neurotrophic actions of glucagon-like peptide-1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders. Br J Pharmacol 166(5):1586–1599CrossRefGoogle Scholar
  13. 13.
    Darsalia V, Mansouri S, Ortsäter H, Olverling A, Nozadze N, Kappe C, Iverfeldt K, Tracy LM, Grankvist N, Sjöholm Å, Patrone C (2012) Glucagon-like peptide-1 receptor activation reduces ischaemic brain damage following stroke in type 2 diabetic rats. Clin Sci (Lond) 122(10):473–483CrossRefGoogle Scholar
  14. 14.
    Hölscher C (2014) Central effects of GLP-1: new opportunities for treatments of neurodegenerative diseases. J Endocrinol 221(1):T31–T41CrossRefGoogle Scholar
  15. 15.
    Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30(12):1591–1601CrossRefGoogle Scholar
  16. 16.
    Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE (2010) Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 25(15):2649–2653CrossRefGoogle Scholar
  17. 17.
    Tan Z, Xu H, Shen X, Jiang H (2015) Nesfatin-1 antagonized rotenone-induced neurotoxicity in MES23.5 dopaminergic cells. Peptides. 69:109–114CrossRefGoogle Scholar
  18. 18.
    Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 7:97–109CrossRefGoogle Scholar
  19. 19.
    Beal MF (1998) Excitotoxicity and nitric oxide in Parkinson’s disease pathogenesis. Ann Neurol 44:110–114CrossRefGoogle Scholar
  20. 20.
    Gash DM, Chen Y, Gerhardt G (2007) Neurotrophic factors and Parkinson’s disease. In: Koller WC, Melamed E (eds) Handbook of clinical neurology Vol.83 (part 1). Parkinson’s disease and related disorders. Elsevier, Amsterdam, pp 521–533Google Scholar
  21. 21.
    Paul G, Sullivian AM (2018) Trophic factors for Parkinson’s disease: where are we and where do we go from here? Eur J Neurosci 49:440–452.  https://doi.org/10.1111/ejn.14102 CrossRefPubMedGoogle Scholar
  22. 22.
    Tansey MG, Romero-Ramos M (2018) Immune system responses in Parkinson’s disease: early and dynamic. Eur J Neurosci.  https://doi.org/10.1111/ejn.14290
  23. 23.
    Varçin M, Bentea E, Michotte Y, Sarre S (2012) Oxidative stress in genetic mouse models of Parkinson’s disease. Oxidative Med Cell Longev 2012:624925CrossRefGoogle Scholar
  24. 24.
    Kirbas A, Kirbas S, Cure MC, Tufekci A (2014) Paraoxonase and arylesterase activity and total oxidative/anti-oxidative status in patients with idiopathic Parkinson’s disease. J Clin Neurosci 21(3):451–455CrossRefGoogle Scholar
  25. 25.
    Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism measurement and significance. Am J Clin Nut 57 (Suppl:715S–725SCrossRefGoogle Scholar
  26. 26.
    Diplock AT (1994) Antioxidants and disease prevention. Mol Asp Med 15(4):293–376CrossRefGoogle Scholar
  27. 27.
    Lotharius J, Brundin P (2002) Impaired dopamine storage resulting from alpha-synuclein mutations may contribute to the pathogenesis of Parkinson’s disease. Hum Mol Genet 11(20):2395–2407CrossRefGoogle Scholar
  28. 28.
    Schapira AH (2006) Etiology of Parkinson’s disease. Neurology 66(10):10 Suppl 4:10–23CrossRefGoogle Scholar
  29. 29.
    Jenner P (2007) Oxidative stress and Parkinson’s disease. Handb Clin Neurol 83:507–520CrossRefGoogle Scholar
  30. 30.
    Venkateshappa C, Harish G, Mythri RB, Mahadevan A, Bharath MM, Shankar SK (2012) Increased oxidative damage and decreased antioxidant function in aging human substantia nigra compared to striatum: implications for Parkinson’s disease. Neurochem Res 37(2):358–369CrossRefGoogle Scholar
  31. 31.
    Mythri RB, Venkateshappa C, Harish G, Mahadevan A, Muthane UB, Yasha TC, Srinivas Bharath MM, Shankar SK (2011) Evaluation of markers of oxidative stress, antioxidant function and astrocytic proliferation in the striatum and frontal cortex of Parkinson’s disease brains. Neurochem Res 36(8):1452–1463CrossRefGoogle Scholar
  32. 32.
    Sharma A, Kaur P, Kumar B, Prabhakar S, Gill KD (2008) Plasma lipid peroxidation and antioxidant status of Parkinson’s disease patients in the Indian population. Parkinsonism Relat Disord 14(1):52–57CrossRefGoogle Scholar
  33. 33.
    Jiang G, Wang M, Wang L, Chen H, Chen Z, Guo J, Weng X, Liu X (2015) The protective effect of nesfatin-1 against renal ischemia-reperfusion injury in rats. Ren Fail 37(5):882–889CrossRefGoogle Scholar
  34. 34.
    Ayada C, Toru Ü, Genç O, Akcılar R, Şahin S (2015) Balanced oxidative status by nesfatin-1 in intestinal ischemia-reperfusion. Int J Clin Exp Med 8(3):3318–3324PubMedPubMedCentralGoogle Scholar
  35. 35.
    Price TO, Samson WK, Niehoff ML, Banks WA (2007) Permeability of the blood-brain barrier to a novel satiety molecule nesfatin-1. Peptides. 28(12):2372–2381CrossRefGoogle Scholar
  36. 36.
    Tasatargil A, Kuscu N, Dalaklioglu S, Adiguzel D, Celik-Ozenci C, Ozdem S, Barutcigil A, Ozdem S (2017) Cardioprotective effect of nesfatin-1 against isoproterenol-induced myocardial infarction in rats: role of the Akt/GSK-3β pathway. Peptides. 95:1–9CrossRefGoogle Scholar
  37. 37.
    Mossello E, Ballini E, Boncinelli M, Monami M, Lonetto G, Mello AM et al (2011) Glucagon-like peptide-1, diabetes, and cognitive decline: possible pathophysiological links and therapeutic opportunities. Exp Diabetes Res 2011:281674CrossRefGoogle Scholar
  38. 38.
    Fang Y, Jiang D, Wang Y, Wang Q, Lv D, Liu J, Liu C (2018) Neuroprotection of rhGLP-1 in diabetic rats with cerebral ischemia/reperfusion injury via regulation of oxidative stress, EAAT2, and apoptosis. Drug Rev Res 79:249–259CrossRefGoogle Scholar
  39. 39.
    Diz-Chaves Y, Toba L, Fandino J, Gonzales-Matias LC, Garcia-Segura LM, Mallo F (2018) The GLP-1 analog, liraglutide prevents the increase of proinflammatory mediators in the hippocampus of male rat pups submitted to maternal perinatal food restriction. J Neuroinflammation 15:337CrossRefGoogle Scholar
  40. 40.
    Tsang AH, Chung KK (2009) Oxidative and nitrosative stress in Parkinson’s disease. Biochim Biophys Acta 1792(7):643–650CrossRefGoogle Scholar
  41. 41.
    Alberio T, Pippione AC, Comi C, Olgiati S, Cecconi D, Zibetti M, Lopiano L, Fasano M (2012) Dopaminergic therapies modulate the T-CELL proteome of patients with Parkinson’s disease. IUBMB Life 64(10):846–852CrossRefGoogle Scholar
  42. 42.
    Jami MS, Pal R, Hoedt E, Neubert TA, Larsen JP, Møller SG (2014) Proteome analysis reveals roles of L-DOPA in response to oxidative stress in neurons. BMC Neurosci 15:93CrossRefGoogle Scholar

Copyright information

© Fondazione Società Italiana di Neurologia 2019

Authors and Affiliations

  1. 1.Faculty of Medicine, Department of NeurologyMugla Sitki Kocman UniversityMuglaTurkey
  2. 2.Faculty of Medicine, Department of BiochemistryMugla Sitki Kocman UniversityMuglaTurkey
  3. 3.Siena CollegeLaudonvilleUSA

Personalised recommendations