Skip to main content

Advertisement

Log in

Dystonin/BPAG1 modulates diabetes and Alzheimer’s disease cross-talk: a meta-analysis

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Dementia is one of the diabetic complications under intensive study. Alteration of synaptic adhesion protein (SAP) associates with neurological diseases, including Alzheimer’s disease. However, the regulation of SAPs in the brain of diabetes mellitus remains elusive. To pinpoint the candidate SAPs underlining the mechanism of diabetic dementia, we investigated expression profiling of SAPs in both streptozotocin (STZ)-induced diabetic mice, AppNL-G-F/NL-G-F mice, and amyloid precursor protein intracellular domain (AICD)-induced human neural cell line from public databases. DST (Dystonin/BPAG1) was identified upregulated in both models. Our finding suggests that DST alteration may involve in the mechanism of diabetic dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SAP:

Synaptic adhesion protein

STZ:

Streptozotocin

AICD:

Amyloid precursor protein intracellular domain

AD:

Alzheimer’s disease

BP:

Bullous pemphigoid

References

  1. Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P (2006) Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 5(1):64–74

    Article  Google Scholar 

  2. Chen S-Y, Hsu YM, Lin YJ, Huang YC, Chen CJ, Lin WD, Liao WL, Chen YT, Lin WY, Liu YH, Yang JS, Sheu JC, Tsai FJ (2016) Current concepts regarding developmental mechanisms in diabetic retinopathy in Taiwan. Biomedicine 6(2):7

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ahtiluoto S, Polvikoski T, Peltonen M, Solomon A, Tuomilehto J, Winblad B, Sulkava R, Kivipelto M (2010) Diabetes, Alzheimer disease, and vascular dementia: a population-based neuropathologic study. Neurology 75(13):1195–1202

    Article  CAS  PubMed  Google Scholar 

  4. Matsuzaki T, Sasaki K, Tanizaki Y, Hata J, Fujimi K, Matsui Y, Sekita A, Suzuki SO, Kanba S, Kiyohara Y, Iwaki T (2010) Insulin resistance is associated with the pathology of Alzheimer disease The Hisayama Study. Neurology 75(9):764–770

    Article  CAS  PubMed  Google Scholar 

  5. Vagelatos NT, Eslick GD (2013) Type 2 diabetes as a risk factor for Alzheimer’s disease: the confounders, interactions, and neuropathology associated with this relationship. Epidemiol Rev 35(1):152–160

    Article  PubMed  Google Scholar 

  6. Abner EL, Nelson PT, Kryscio RJ, Schmitt FA, Fardo DW, Woltjer RL, Cairns NJ, Yu L, Dodge HH, Xiong C, Masaki K, Tyas SL, Bennett DA, Schneider JA, Arvanitakis Z (2016) Diabetes is associated with cerebrovascular but not Alzheimer’s disease neuropathology. Alzheimers Dement 12(8):882–889

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hachinski V (2019) Dementia: new vistas and opportunities. Neurol Sci

  8. Leshchyns’ka I, Liew HT, Shepherd C, Halliday GM, Stevens CH, Ke YD, Ittner LM, Sytnyk V (2015) Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer’s disease. Nat Commun 6:8836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brose N (1999) Synaptic cell adhesion proteins and synaptogenesis in the mammalian central nervous system. Naturwissenschaften 86(11):516–524

    Article  CAS  PubMed  Google Scholar 

  10. Yamagata M, Sanes JR, Weiner JA (2003) Synaptic adhesion molecules. Curr Opin Cell Biol 15(5):621–632

    Article  CAS  PubMed  Google Scholar 

  11. Missler M, Südhof TC, Biederer T (2012) Synaptic cell adhesion. Cold Spring Harb Perspect Biol 4:a005694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rolf B, Kutsche M, Bartsch U (2001) Severe hydrocephalus in L1-deficient mice. Brain Res 891(1–2):247–252

    Article  CAS  PubMed  Google Scholar 

  13. Montag-Sallaz M, Schachner M, Montag D (2002) Misguided axonal projections, neural cell adhesion molecule 180 mRNA upregulation, and altered behavior in mice deficient for the close homolog of L1. Mol Cell Biol 22(22):7967–7981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wyss L, Schäfer J, Liebner S, Mittelbronn M, Deutsch U, Enzmann G, Adams RH, Aurrand-Lions M, Plate KH, Imhof BA, Engelhardt B (2012) Junctional adhesion molecule (JAM)-C deficient C57BL/6 mice develop a severe hydrocephalus. PLoS One 7(9):e45619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tucci V, Kleefstra T, Hardy A, Heise I, Maggi S, Willemsen MH, Hilton H, Esapa C, Simon M, Buenavista MT, McGuffin LJ, Vizor L, Dodero L, Tsaftaris S, Romero R, Nillesen WN, Vissers LELM, Kempers MJ, Vulto-van Silfhout AT, Iqbal Z, Orlando M, Maccione A, Lassi G, Farisello P, Contestabile A, Tinarelli F, Nieus T, Raimondi A, Greco B, Cantatore D, Gasparini L, Berdondini L, Bifone A, Gozzi A, Wells S, Nolan PM (2014) Dominant β-catenin mutations cause intellectual disability with recognizable syndromic features. J Clin Invest 124(4):1468–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moon Y, Choi YJ, Kim JO, Han SH (2018) Muscle profile and cognition in patients with Alzheimer’s disease dementia. Neurol Sci 39(11):1861–1866

    Article  PubMed  Google Scholar 

  17. Cheng J, Liu HP, Lee CC, Chen MY, Lin WY, Tsai FJ (2018) Matrix metalloproteinase 14 modulates diabetes and Alzheimer’s disease cross-talk: a meta-analysis. Neurol Sci 39(2):267–274

    Article  PubMed  Google Scholar 

  18. Zhang W et al (2006) SynDB: a synapse protein DataBase based on synapse ontology. Nucleic Acids Res 35(suppl_1):D737–D741

    PubMed  PubMed Central  Google Scholar 

  19. Huang DW, Sherman BT, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44

    Article  CAS  Google Scholar 

  20. Suzuki R, Lee K, Jing E, Biddinger SB, McDonald JG, Montine TJ, Craft S, Kahn CR (2010) Diabetes and insulin in regulation of brain cholesterol metabolism. Cell Metab 12(6):567–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Castillo E, Leon J, Mazzei G, Abolhassani N, Haruyama N, Saito T, Saido T, Hokama M, Iwaki T, Ohara T, Ninomiya T, Kiyohara Y, Sakumi K, LaFerla FM, Nakabeppu Y (2017) Comparative profiling of cortical gene expression in Alzheimer’s disease patients and mouse models demonstrates a link between amyloidosis and neuroinflammation. Sci Rep 7(1):17762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Müller T, Concannon CG, Ward MW, Walsh CM, Tirniceriu AL, Tribl F, Kögel D, Prehn JHM, Egensperger R (2007) Modulation of gene expression and cytoskeletal dynamics by the amyloid precursor protein intracellular domain (AICD). Mol Biol Cell 18(1):201–210

    Article  PubMed  PubMed Central  Google Scholar 

  23. Suckow AT (2010) The role of synaptogenic synaptic adhesion molecules in insulin secretion. UC San Diego

  24. Franklin IK, Wollheim CB (2004) GABA in the endocrine pancreas: its putative role as an islet cell paracrine-signalling molecule. J Gen Physiol 123(3):185–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Suckow AT, Comoletti D, Waldrop MA, Mosedale M, Egodage S, Taylor P, Chessler SD (2008) Expression of neurexin, neuroligin, and their cytoplasmic binding partners in the pancreatic β-cells and the involvement of neuroligin in insulin secretion. Endocrinology 149(12):6006–6017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ferrier A, Boyer JG, Kothary R (2013, Elsevier) Cellular and molecular biology of neuronal dystonin, in International review of cell and molecular biology. Int Rev Cell Mol Biol 300:85–120

    Article  CAS  PubMed  Google Scholar 

  27. Lynch-Godrei A, Kothary R (2016, Elsevier) Functional and genetic analysis of neuronal isoforms of BPAG1. Methods Enzymol 569:355–372

    Article  CAS  PubMed  Google Scholar 

  28. Di Zenzo G et al (2012) Bullous pemphigoid: from the clinic to the bench. Clin Dermatol 30(1):3–16

    Article  PubMed  Google Scholar 

  29. Foureur N et al (2001) Bullous pemphigoid in a leg affected with hemiparesia: a possible relation of neurological diseases with bullous pemphigoid? Eur J Dermatol 11(3):230–233

  30. Brick KE, Weaver CH, Savica R, Lohse CM, Pittelkow MR, Boeve BF, Gibson LE, Camilleri MJ, Wieland CN (2014) A population-based study of the association between bullous pemphigoid and neurologic disorders. J Am Acad Dermatol 71(6):1191–1197

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tarazona MJM, Mota ANCM, Gripp AC, Unterstell N, Bressan AL (2015) Bullous pemphigoid and neurological disease: statistics from a dermatology service. An Bras Dermatol 90(2):280–282

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chuang T-Y, Korkij W, Soltani K, Clayman J, Cook J (1984) Increased frequency of diabetes mellitus in patients with bullous pemphigoid: a case-control study. J Am Acad Dermatol 11(6):1099–1102

    Article  CAS  PubMed  Google Scholar 

  33. Pasmatzi E, Monastirli A, Habeos J, Georgiou S, Tsambaos D (2011) Dipeptidyl peptidase-4 inhibitors cause bullous pemphigoid in diabetic patients: report of two cases. Diabetes Care 34(8):e133–e133

    Article  PubMed  PubMed Central  Google Scholar 

  34. Skandalis K, Spirova M, Gaitanis G, Tsartsarakis A, Bassukas ID (2012) Drug-induced bullous pemphigoid in diabetes mellitus patients receiving dipeptidyl peptidase-IV inhibitors plus metformin. J Eur Acad Dermatol Venereol 26(2):249–253

    Article  CAS  PubMed  Google Scholar 

  35. Geller S, Kremer N, Zeeli T, Sprecher E (2018) Bullous pemphigoid and diabetes mellitus: are we missing the larger picture. J Am Acad Dermatol 79(2):e27

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the Ministry of Science and Technology in Taiwan (MOST 106-2320-B-039-023, MOST 107-2314-B-039 -042 -MY2, MOST 104-2320-B-039-009, MOST 105-2632-B-039-002, MOST 106-2632-B-039-001) and grants from China Medical University and Hospital (CMU107-S-51, CMU107-S-08, CMU104-S-14-03, CMU105-S-53, DMR-101-065, and DMR-103-099). This study is also supported in part by the Chang Gung Memorial Hospital (grants CMRPF6D0051, CMRPF6D0052, CMRPF6D0053).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Yong Lin or Fuu-Jen Tsai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 94 kb)

ESM 2

(DOCX 20 kb)

ESM 3

(DOCX 40 kb)

ESM 4

(DOCX 14 kb)

ESM 5

(DOCX 14 kb)

ESM 6

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Liu, HP., Hwang, SL. et al. Dystonin/BPAG1 modulates diabetes and Alzheimer’s disease cross-talk: a meta-analysis. Neurol Sci 40, 1577–1582 (2019). https://doi.org/10.1007/s10072-019-03879-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-019-03879-3

Keywords

Navigation