Advertisement

KIBRA T allele influences memory performance and progression of cognitive decline: a 7-year follow-up study in subjective cognitive decline and mild cognitive impairment

  • Salvatore Mazzeo
  • Valentina Bessi
  • Sonia Padiglioni
  • Silvia Bagnoli
  • Laura Bracco
  • Sandro Sorbi
  • Benedetta NacmiasEmail author
Original Article
  • 37 Downloads

Abstract

KIBRA is a signal transducer protein, mainly expressed in the kidney and brain. A single-nucleotide polymorphism (SNP rs17070145, T → C exchange) has been linked to different cognitive function. In 2008, we studied 70 subjects who complained of subjective cognitive decline (SCD) and found that CT/TT carriers performed worse than CC carriers on a long-term memory test. We followed up the 70 SCD subjects and also 31 subjects affected by mild cognitive impairment (MCI) for a mean follow-up time of 7 years, during which 16 SCD subjects progressed to MCI and 14 MCI subjects progressed to Alzheimer’s disease (AD). Carrying the T allele was associated with MCI and with a two times-higher risk of developing MCI than CC carriers. In the SCD sample, CT/TT carriers showed a greater worsening on Rivermead Behavioral Memory Test (RBMT) compared to CC carriers. In the MCI sample, CT/TT carriers performed worse than CC carriers on RBMT. There is a lack of consensus on the effect of KIBRA gene variants on cognitive performances in episodic memory and on the risk of AD. Our results confirm a role of T allele on progression of cognitive decline.

Keywords

Alzheimer’s disease Subjective cognitive decline Mild cognitive impairment KIBRA ApoE Neuropsychology 

Abbreviations

SCD

Subjective cognitive decline

RBMT

Rivermead Behavioral Memory Test

HDRS

Hamilton Depression Rating Scale

Notes

Funding information

This research was funded by Ministero della Salute and Regione Toscana (grant nos. GR-2010-2316359-Longitudinal clinical-neuropsychological study of subjective memory complaints) and Fondi Ricerca UNIFI 2018.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All procedures involving experiments on human subjects have been done in accordance with the ethical standards of the Committee on Human Experimentation of the institution in which the experiments were done or in accordance with the Helsinki Declaration of 1975. Specific national laws have been observed.

Supplementary material

10072_2019_3866_MOESM1_ESM.docx (27 kb)
ESM 1 (DOCX 27 kb)

References

  1. 1.
    Johannsen S, Duning K, Pavenstädt H, Kremerskothen J, Boeckers TM (2008) Temporal-spatial expression and novel biochemical properties of the memory-related protein KIBRA. Neuroscience 155:1165–1173.  https://doi.org/10.1016/j.neuroscience.2008.06.054 CrossRefGoogle Scholar
  2. 2.
    Kremerskothen J, Plaas C, Büther K, Finger I, Veltel S, Matanis T, Liedtke T, Barnekow A (2003) Characterization of KIBRA, a novel WW domain-containing protein. Biochem Biophys Res Commun 300:862–867CrossRefGoogle Scholar
  3. 3.
    Tracy TE, Sohn PD, Minami SS, Wang C, Min S-W, Li Y, Zhou Y, Le D, Lo I, Ponnusamy R, Cong X, Schilling B, Ellerby LM, Huganir RL, Gan L (2016) Acetylated tau obstructs KIBRA-mediated signaling in synaptic plasticity and promotes tauopathy-related memory loss. Neuron 90:245–260.  https://doi.org/10.1016/j.neuron.2016.03.005 CrossRefGoogle Scholar
  4. 4.
    Papassotiropoulos A, Stephan DA, Huentelman MJ, Hoerndli FJ, Craig DW, Pearson JV, Huynh K-D, Brunner F, Corneveaux J, Osborne D, Wollmer MA, Aerni A, Coluccia D, Hänggi J, Mondadori CRA, Buchmann A, Reiman EM, Caselli RJ, Henke K, de Quervain DJ-F (2006) Common Kibra alleles are associated with human memory performance. Science 314:475–478.  https://doi.org/10.1126/science.1129837 CrossRefGoogle Scholar
  5. 5.
    Almeida OP, Schwab SG, Lautenschlager NT, Morar B, Greenop KR, Flicker L, Wildenauer D (2008) KIBRA genetic polymorphism influences episodic memory in later life, but does not increase the risk of mild cognitive impairment. J Cell Mol Med 12:1672–1676.  https://doi.org/10.1111/j.1582-4934.2008.00229.x CrossRefGoogle Scholar
  6. 6.
    Kauppi K, Nilsson L-G, Adolfsson R, Eriksson E, Nyberg L (2011) KIBRA polymorphism is related to enhanced memory and elevated hippocampal processing. J Neurosci 31:14218–14222.  https://doi.org/10.1523/JNEUROSCI.3292-11.2011 CrossRefGoogle Scholar
  7. 7.
    Witte AV, Köbe T, Kerti L, Rujescu D, Flöel A (2016) Impact of KIBRA polymorphism on memory function and the hippocampus in older adults. Neuropsychopharmacology 41:781–790.  https://doi.org/10.1038/npp.2015.203 CrossRefGoogle Scholar
  8. 8.
    Yasuda Y, Hashimoto R, Ohi K, Fukumoto M, Takamura H, Iike N, Yoshida T, Hayashi N, Takahashi H, Yamamori H, Morihara T, Tagami S, Okochi M, Tanaka T, Kudo T, Kamino K, Ishii R, Iwase M, Kazui H, Takeda M (2010) Association study of KIBRA gene with memory performance in a Japanese population. World J Biol Psychiatry Off J World Fed Soc Biol Psychiatry 11:852–857.  https://doi.org/10.3109/15622971003797258 CrossRefGoogle Scholar
  9. 9.
    Corneveaux JJ, Liang WS, Reiman EM, Webster JA, Myers AJ, Zismann VL, Joshipura KD, Pearson JV, Hu-Lince D, Craig DW, Coon KD, Dunckley T, Bandy D, Lee W, Chen K, Beach TG, Mastroeni D, Grover A, Ravid R, Sando SB, Aasly JO, Heun R, Jessen F, Kölsch H, Rogers J, Hutton ML, Melquist S, Petersen RC, Alexander GE, Caselli RJ, Papassotiropoulos A, Stephan DA, Huentelman MJ (2010) Evidence for an association between KIBRA and late-onset Alzheimer’s disease. Neurobiol Aging 31:901–909.  https://doi.org/10.1016/j.neurobiolaging.2008.07.014 CrossRefGoogle Scholar
  10. 10.
    Muse J, Emery M, Sambataro F, Lemaitre H, Tan H-Y, Chen Q, Kolachana BS, Das S, Callicott JH, Weinberger DR, Mattay VS (2014) WWC1 genotype modulates age-related decline in episodic memory function across the adult life span. Biol Psychiatry 75:693–700.  https://doi.org/10.1016/j.biopsych.2013.09.036 CrossRefGoogle Scholar
  11. 11.
    Schaper K, Kolsch H, Popp J, Wagner M, Jessen F (2008) KIBRA gene variants are associated with episodic memory in healthy elderly. Neurobiol Aging 29:1123–1125.  https://doi.org/10.1016/j.neurobiolaging.2007.02.001 CrossRefGoogle Scholar
  12. 12.
    Schuck NW, Doeller CF, Schjeide B-MM, Schröder J, Frensch PA, Bertram L, Li S-C (2013) Aging and KIBRA/WWC1 genotype affect spatial memory processes in a virtual navigation task. Hippocampus 23:919–930.  https://doi.org/10.1002/hipo.22148 CrossRefGoogle Scholar
  13. 13.
    Laukka EJ, Lövdén M, Herlitz A, Karlsson S, Ferencz B, Pantzar A, Keller L, Graff C, Fratiglioni L, Bäckman L (2013) Genetic effects on old-age cognitive functioning: a population-based study. Psychol Aging 28:262–274.  https://doi.org/10.1037/a0030829 CrossRefGoogle Scholar
  14. 14.
    Nacmias B, Bessi V, Bagnoli S, Tedde A, Cellini E, Piccini C, Sorbi S, Bracco L (2008) KIBRA gene variants are associated with episodic memory performance in subjective memory complaints. Neurosci Lett 436:145–147.  https://doi.org/10.1016/j.neulet.2008.03.008 CrossRefGoogle Scholar
  15. 15.
    Wersching H, Guske K, Hasenkamp S, Hagedorn C, Schiwek S, Jansen S, Witte V, Wellmann J, Lohmann H, Duning K, Kremerskothen J, Knecht S, Brand E, Floel A (2011) Impact of common KIBRA allele on human cognitive functions. Neuropsychopharmacology 36:1296–1304.  https://doi.org/10.1038/npp.2011.16 CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Liu JJ, Lavebratt C, Lou F, Forsell Y (2015) KIBRA genetic polymorphism and cognitive dysfunction in depression. Psychiatry Res 226:405–406.  https://doi.org/10.1016/j.psychres.2015.01.012 CrossRefGoogle Scholar
  17. 17.
    Franks KH, Summers MJ, Vickers JC (2014) KIBRA gene polymorphism has no association with verbal or visual episodic memory performance. Front Aging Neurosci 6.  https://doi.org/10.3389/fnagi.2014.00270
  18. 18.
    Need AC, Attix DK, McEvoy JM, Cirulli ET, Linney KN, Wagoner AP, Gumbs CE, Giegling I, Möller H-J, Francks C, Muglia P, Roses A, Gibson G, Weale ME, Rujescu D, Goldstein DB (2008) Failure to replicate effect of kibra on human memory in two large cohorts of European origin. Am J Med Genet B Neuropsychiatr Genet 147B:667–668.  https://doi.org/10.1002/ajmg.b.30658 CrossRefGoogle Scholar
  19. 19.
    Rodríguez-Rodríguez E, Infante J, Llorca J, Mateo I, Sánchez-Quintana C, García-Gorostiaga I, Sánchez-Juan P, Berciano J, Combarros O (2009) Age-dependent association of KIBRA genetic variation and Alzheimer’s disease risk. Neurobiol Aging 30:322–324.  https://doi.org/10.1016/j.neurobiolaging.2007.07.003 CrossRefGoogle Scholar
  20. 20.
    Ling J, Huang Y, Zhang L, Wei D, Cheng W (2018) Association of KIBRA polymorphism with risk of Alzheimer’s disease: evidence based on 20 case-control studies. Neurosci Lett 662:77–83.  https://doi.org/10.1016/j.neulet.2017.08.057 CrossRefGoogle Scholar
  21. 21.
    Porter T, Burnham SC, Doré V, Savage G, Bourgeat P, Begemann K, Milicic L, Ames D, Bush AI, Maruff P, Masters CL, Rowe CC, Rainey-Smith S, Martins RN, Groth D, Verdile G, Villemagne VL, Laws SM (2018) KIBRA is associated with accelerated cognitive decline and hippocampal atrophy in APOE ε4-positive cognitively normal adults with high Aβ-amyloid burden. Sci Rep 8:2034.  https://doi.org/10.1038/s41598-018-20513-y CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Lawton MP, Brody EM (1969) Assessment of older people: self-maintaining and instrumental activities of daily living. The Gerontologist 9:179–186.  https://doi.org/10.1093/geront/9.3_Part_1.179 CrossRefGoogle Scholar
  23. 23.
    Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund L-O, Nordberg A, Bäckman L, Albert M, Almkvist O, Arai H, Basun H, Blennow K, De Leon M, DeCarli C, Erkinjuntti T, Giacobini E, Graff C, Hardy J, Jack C, Jorm A, Ritchie K, Van Duijn C, Visser P, Petersen R c (2004) Mild cognitive impairment – beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment. J Intern Med 256:240–246.  https://doi.org/10.1111/j.1365-2796.2004.01380.x CrossRefGoogle Scholar
  24. 24.
    McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease, Alzheimers Dement. J Alzheimers Assoc 7:263–269.  https://doi.org/10.1016/j.jalz.2011.03.005 CrossRefGoogle Scholar
  25. 25.
    Crook TH, Feher EP, Larrabee GJ (1992) Assessment of memory complaint in age-associated memory impairment: the MAC-Q. Int Psychogeriatr 4:165–176CrossRefGoogle Scholar
  26. 26.
    Jessen F, Amariglio RE, van Boxtel M, Breteler M, Ceccaldi M, Chételat G, Dubois B, Dufouil C, Ellis KA, van der Flier WM, Glodzik L, van Harten AC, de Leon MJ, McHugh P, Mielke MM, Molinuevo JL, Mosconi L, Osorio RS, Perrotin A, Petersen RC, Rabin LA, Rami L, Reisberg B, Rentz DM, Sachdev PS, de la Sayette V, Saykin AJ, Scheltens P, Shulman MB, Slavin MJ, Sperling RA, Stewart R, Uspenskaya O, Vellas B, Visser PJ, Wagner M (2014) A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease, Alzheimers Dement. J Alzheimers Assoc 10:844–852.  https://doi.org/10.1016/j.jalz.2014.01.001 CrossRefGoogle Scholar
  27. 27.
    Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease, Alzheimers Dement. J Alzheimers Assoc 7:270–279.  https://doi.org/10.1016/j.jalz.2011.03.008 CrossRefGoogle Scholar
  28. 28.
    Bracco L, Amaducci L, Pedone D, Bino G, Lazzaro MP, Carella F, D’Antona R, Gallato R, Denes G (1990) Italian multicentre study on dementia (SMID): a neuropsychological test battery for assessing Alzheimer’s disease. J Psychiatr Res 24:213–226CrossRefGoogle Scholar
  29. 29.
    Caffarra P, Vezzadini G, Dieci F, Zonato F, Venneri A (2002) Rey-Osterrieth complex figure: normative values in an Italian population sample. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 22:443–447.  https://doi.org/10.1007/s100720200003. Google Scholar
  30. 30.
    Baddeley A, Della Sala S, Papagno C, Spinnler H (1997) Dual-task performance in dysexecutive and nondysexecutive patients with a frontal lesion. Neuropsychology 11:187–194CrossRefGoogle Scholar
  31. 31.
    Spinnler H, Tognoni G (1987) Standardizzazione e taratura italiana di test neuropsicologici: gruppo italiano per lo studio neuropsicologico dell’invecchiamento. Masson Italia Periodici, MilanoGoogle Scholar
  32. 32.
    Giovagnoli AR, Del Pesce M, Mascheroni S, Simoncelli M, Laiacona M, Capitani E (1996) Trail making test: normative values from 287 normal adult controls. Ital J Neurol Sci 17:305–309CrossRefGoogle Scholar
  33. 33.
    M. Brazzelli, S. Della Sala, M. Laiacona, Calibration of the Italian version of the Rivermead Behavioural Memory Test: a test for the ecological evaluation of memory., Boll Psicol Appl. (1993) 33–42.Google Scholar
  34. 34.
    Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Sorbi S, Nacmias B, Forleo P, Latorraca S, Gobbini I, Bracco L, Piacentini S, Amaducci L (1994) ApoE allele frequencies in Italian sporadic and familial Alzheimer’s disease. Neurosci Lett 177:100–102CrossRefGoogle Scholar
  36. 36.
    Hayashi N, Kazui H, Kamino K, Tokunaga H, Takaya M, Yokokoji M, Kimura R, Kito Y, Wada T, Nomura K, Sugiyama H, Yamamoto D, Yoshida T, Currais A, Soriano S, Hamasaki T, Yamamoto M, Yasuda Y, Hashimoto R, Tanimukai H, Tagami S, Okochi M, Tanaka T, Kudo T, Morihara T, Takeda M (2010) KIBRA genetic polymorphism influences episodic memory in Alzheimer’s disease, but does not show association with disease in a Japanese cohort. Dement Geriatr Cogn Disord 30:302–308.  https://doi.org/10.1159/000320482 CrossRefGoogle Scholar
  37. 37.
    Kawai E, Shibata N, Nagata T, Shinagawa S, Tagai K, Tgai K, Ohnuma T, Shimazaki H, Toda A, Kasanuki K, Takayama T, Suzuki A, Nakayama K, Yamada H, Arai H (2015) Genetic association between KIBRA polymorphism and Alzheimer’s disease with in a Japanese population. NeuroMolecular Med 17:170–177.  https://doi.org/10.1007/s12017-015-8348-8 CrossRefGoogle Scholar
  38. 38.
    Wang H-F, Tan L, Yu J-T, Ma X-Y, Liu Q-Y, Wang W (2013) Age-dependent association of KIBRA gene polymorphism with Alzheimer’s disease in Han Chinese. Mol Biol Rep 40:7077–7082.  https://doi.org/10.1007/s11033-013-2830-x CrossRefGoogle Scholar
  39. 39.
    Preuschhof C, Heekeren HR, Li S-C, Sander T, Lindenberger U, Bäckman L (2010) KIBRA and CLSTN2 polymorphisms exert interactive effects on human episodic memory. Neuropsychologia 48:402–408.  https://doi.org/10.1016/j.neuropsychologia.2009.09.031 CrossRefGoogle Scholar
  40. 40.
    Zhang H, Kranzler HR, Poling J, Gruen JR, Gelernter J (2009) Cognitive flexibility is associated with KIBRA variant and modulated by recent tobacco use. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 34:2508–2516.  https://doi.org/10.1038/npp.2009.80 CrossRefGoogle Scholar
  41. 41.
    Wagner AK, Hatz LE, Scanlon JM, Niyonkuru C, Miller MA, Ricker JH, Conley YP, Ferrell RE (2012) Association of KIBRA rs17070145 polymorphism and episodic memory in individuals with severe TBI. Brain Inj 26:1658–1669.  https://doi.org/10.3109/02699052.2012.700089 CrossRefGoogle Scholar
  42. 42.
    Brodaty H, Heffernan M, Kochan NA, Draper B, Trollor JN, Reppermund S, Slavin MJ, Sachdev PS (2013) Mild cognitive impairment in a community sample: the Sydney memory and ageing study, Alzheimers Dement. J Alzheimers Assoc 9:310–317.e1.  https://doi.org/10.1016/j.jalz.2011.11.010 CrossRefGoogle Scholar
  43. 43.
    Bolló-Gasol S, Piñol-Ripoll G, Cejudo-Bolivar JC, Llorente-Vizcaino A, Peraita-Adrados H (2014) Ecological assessment of mild cognitive impairment and Alzheimer disease using the Rivermead Behavioural Memory Test, Neurol. Barc. Spain. 29:339–345.  https://doi.org/10.1016/j.nrl.2013.07.004
  44. 44.
    Lopes K, Memória C, Forlenza O, Diniz B (2011) Rivermead behavioral memory test (RBMT) tasks predict the conversion from mild cognitive impairment to Alzheimer’s disease, Alzheimers Dement. J Alzheimers Assoc 7:S253.  https://doi.org/10.1016/j.jalz.2011.05.720 Google Scholar
  45. 45.
    Bessi V, Mazzeo S, Padiglioni S, Piccini C, Nacmias B, Sorbi S, Bracco L (2018) From subjective cognitive decline to Alzheimer’s disease: the predictive role of neuropsychological assessment, personality traits, and cognitive reserve. A 7-year follow-up study. J Alzheimers Dis JAD 63:1523–1535.  https://doi.org/10.3233/JAD-171180 CrossRefGoogle Scholar

Copyright information

© Fondazione Società Italiana di Neurologia 2019

Authors and Affiliations

  • Salvatore Mazzeo
    • 1
  • Valentina Bessi
    • 1
  • Sonia Padiglioni
    • 1
  • Silvia Bagnoli
    • 1
  • Laura Bracco
    • 1
  • Sandro Sorbi
    • 1
    • 2
  • Benedetta Nacmias
    • 1
    Email author
  1. 1.Department of Neuroscience, Psychology, Drug Research and Child HealthUniversity of FlorenceFlorenceItaly
  2. 2.IRCCS Fondazione Don Carlo GnocchiFlorenceItaly

Personalised recommendations