Neurological Sciences

, Volume 40, Issue 1, pp 127–132 | Cite as

Olfactory bulb atrophy in migraine patients

  • Tülin AktürkEmail author
  • Nermin Tanık
  • Halil İbrahim Serin
  • Hikmet Saçmacı
  • Levent Ertuğrul İnan
Original Article



Osmophobia and headache triggered by odors are commonly seen in migraine, and these are symptoms that differentiate migraine from other primary headaches. Since these odor-related symptoms are disease-specific, we aimed to measure the volume of olfactory bulb and depth of olfactory sulcus in migraine patients.

Patients and method

A total of 93 subjects, consisting of 62 episodic migraine (32 with osmophobia, 30 without osmophobia) patients and 31 healthy controls, were included in this study. Diagnosis and classification of migraine were performed according to the beta version criteria of International Classification of Headache Disorders (ICHD-3 Beta version). Beck depression and beck anxiety inventory were applied to the patients, and the measurement of bilateral olfactory bulb volume (OBV) and olfactory sulcus depth (OSD) was performed manually in the brain magnetic resonance imaging (MRI).


More significantly in the left OBV, low OBV has been determined in migraine patients compared to the control group (p < 0.001, p = 0.020). When migraine patients with or without osmophobia were compared to the control group; OBV was determined to be the lowest in migraine group with osmophobia, and left-weighted bilateral OBV was determined to be low (p < 0.001, p = 0.046). No statistically significant difference was determined between groups in OSD measurements (p = 0.646, p = 0.490).


Left-weighted bilateral OBV atrophy determined in migraine patients may be guiding for the clarification of migraine pathophysiology and enlightening of the relation between migraine and odor.


Migraine Olfactory bulb atrophy Osmophobia Neurodegeneration 


Compliance with ethical standards

Bozok University School of Medicine Ethics Committee approved the study protocol (protocol number: 2017-KAEK-189_2017.06.21_03) and all the participants provided written informed consent.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Wang YF, Fuh JL, Chen SP, Wu JC, Wang SJ (2012) Clinical correlates and diagnostic utility of osmophobia in migraine. Cephalalgia 32:1180–1188CrossRefGoogle Scholar
  2. 2.
    Silva-Néto RP, Peres MF, Valença MM (2014) Accuracy of osmophobia in the differential diagnosis between migraine and tension-type headache. J Neurol Sci 339:118–122CrossRefGoogle Scholar
  3. 3.
    De Carlo D, Toldo I, Dal Zotto L et al (2012) Osmophobia as an early marker of migraine: a follow-up study in juvenile patients. Cephalalgia 32:401–406CrossRefGoogle Scholar
  4. 4.
    Rocha-Filho PA, Marques KS, Torres RC et al (2015) Osmophobia and headaches in primary care: prevalence, associated factors, and importance in diagnosing migraine. Headache 55:840–845CrossRefGoogle Scholar
  5. 5.
    Fornazieri MA, Neto AR, de Rezende Pinna F, Gobbi Porto FH, de Lima Navarro P, Voegels RL, Doty RL (2016) Olfactory symptoms reported by migraineurs with and without auras. Headache 56:1608–1616CrossRefGoogle Scholar
  6. 6.
    Silva-Néto RP, Rodrigues ÂB, Cavalcante DC, Ferreira PHPB, Nasi EP, Sousa KMH, Peres MFP, Valença MM (2017) May headache triggered by odors be regarded as a differentiating factor between migraine and other primary headaches? Cephalalgia 37:20–28CrossRefGoogle Scholar
  7. 7.
    Stankewitz A, May A (2011) Increased limbic and brainstem activity during migraine attacks following olfactory stimulation. Neurology 77:476–482CrossRefGoogle Scholar
  8. 8.
    Headache Classification Committee of the International Headache Society (2013) The international classification of headache disorders, 3rd edition (beta version). Cephalalgia 33:629–808CrossRefGoogle Scholar
  9. 9.
    Melzack R (1987) The short-form McGill pain questionnaire. Pain 30:191–197CrossRefGoogle Scholar
  10. 10.
    Physical status: the use and interpretation of anthropometry (1995). Report of a WHO expert committee. World Health Organ Tech Rep Ser 854: 1–452Google Scholar
  11. 11.
    Rocha-Filho PA, Marques KS, Torres RC, Leal KN (2016) Migraine, osmophobia, and anxiety. Pain Med 17:776–780PubMedGoogle Scholar
  12. 12.
    Rottstaedt F, Weidner K, Strauß T, Schellong J, Kitzler H, Wolff-Stephan S, Hummel T, Croy I (2018) Size matters - the olfactory bulb as a marker for depression. J Affect Disord 229:193–198CrossRefGoogle Scholar
  13. 13.
    Hummel T, Damm M, Vent J, Schmidt M, Theissen P, Larsson M, Klussmann JP (2003) Depth of olfactory sulcus and olfactory function. Brain Res 975:85–89CrossRefGoogle Scholar
  14. 14.
    Wang J, You H, Liu JF, Ni DF, Zhang ZX, Guan J (2011) Association of olfactory bulb volume and olfactory sulcus depth with olfactory function in patients with Parkinson disease. AJNR Am J Neuroradiol 32:677–681CrossRefGoogle Scholar
  15. 15.
    Li WL, Chu MW, Wu A et al (2018) Adult-born neurons facilitate olfactory bulb pattern separation during task engagement. Elife 13:1–26Google Scholar
  16. 16.
    Thomann PA, Dos Santos V, Toro P, Schönknecht P, Essig M, Schröder J (2009) Reduced olfactory bulb and tract volume in early Alzheimer’s disease-a MRI study. Neurobiol Aging 30:838–841CrossRefGoogle Scholar
  17. 17.
    Li J, Gu CZ, Su JB et al (2016) Changes in olfactory bulb volume in Parkinson’s disease: a systematic review and meta-analysis. PLoS One 11:1–14Google Scholar
  18. 18.
    Yaldizli Ö, Penner IK, Yonekawa T, Naegelin Y, Kuhle J, Pardini M, Chard DT, Stippich C, Kira JI, Bendfeldt K, Amann M, Radue EW, Kappos L, Sprenger T (2016) The association between olfactory bulb volume, cognitive dysfunction, physical disability and depression in multiple sclerosis. Eur J Neurol 23:510–519CrossRefGoogle Scholar
  19. 19.
    Li LM, Guo HY, Zhao N et al (2018) Comparison of olfactory function between neuromyelitis optica and multiple sclerosis. Int J Neurosci 17:1–6CrossRefGoogle Scholar
  20. 20.
    Zhang JL, Liu G, Hang W et al (2013) Olfactory function in patients with idiopathic rapid eye movement sleep behavior disorder. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 48:394–397PubMedGoogle Scholar
  21. 21.
    Podlesek D, Leimert M, Schuster B, Gerber J, Schackert G, Kirsch M, Hummel T (2012) Olfactory bulb volume in patients with idiopathic normal pressure hydrocephalus. Neuroradiology 54:1229–1233CrossRefGoogle Scholar
  22. 22.
    Doty RL (2017) Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate? Lancet Neurol 16:478–488CrossRefGoogle Scholar
  23. 23.
    Kim J, Choi Y, Ahn M, Jung K, Shin T (2018) Olfactory dysfunction in autoimmune central nervous system neuroinflammation. Mol Neurobiol 55:8499–8508. CrossRefPubMedGoogle Scholar
  24. 24.
    Goektas O, Schmidt F, Bohner G, Erb K, Ludemann L, Dahlslett B, Harms L, Fleiner F (2011) Olfactory bulb volume and olfactory function in patients with multiple sclerosis. Rhinology 49:221–226PubMedGoogle Scholar
  25. 25.
    Shoenfeld N, Agmon-Levin N, Flitman-Katzevman I, Paran D, Katz BSP, Kivity S, Langevitz P, Zandman-Goddard G, Shoenfeld Y (2009) The sense of smell in systemic lupus erythematosus. Arthritis Rheum 60:1484–1487CrossRefGoogle Scholar
  26. 26.
    Sorbo JG, Moe SE, Holen T (2007) Early upregulation in nasal epithelium and strong expression in olfactory bulb glomeruli suggest a role for Aquaporin-4 in olfaction. FEBS Lett 581:4884–4890CrossRefGoogle Scholar
  27. 27.
    Bashir A, Lipton RB, Ashina S, Ashina M (2013) Migraine and structural changes in the brain: a systematic review and meta-analysis. Neurology 81:1260–1268CrossRefGoogle Scholar
  28. 28.
    Jia Z, Yu S (2017) Grey matter alterations in migraine: a systematic review and meta-analysis. Neuroimage Clin 14:130–140CrossRefGoogle Scholar
  29. 29.
    Palm-Meinders IH, Arkink EB, Koppen H, Amlal S, Terwindt GM, Launer LJ, van Buchem MA, Ferrari MD, Kruit MC (2017) Volumetric brain changes in migraineurs from the general population. Neurology 89:2066–2074CrossRefGoogle Scholar
  30. 30.
    Mehnert J, May A (2017) Functional and structural alterations in the migraine cerebellum. J Cereb Blood Flow Metab.
  31. 31.
    Blažina K, Mahović-Lakušić D, Relja M (2017) Brainstem nuclei changes in migraine detected by transcranial sonography. Neurol Sci 38(8):1509–1512. CrossRefPubMedGoogle Scholar
  32. 32.
    Demarquay G, Mauguière F (2016) Central nervous system underpinnings of sensory hypersensitivity in migraine: insights from neuroimaging and electrophysiological studies. Headache 56:1418–1438CrossRefGoogle Scholar
  33. 33.
    Grosser K, Oelkers R, Hummel T, Geisslinger G, Brune K, Kobal G, Lötsch J (2000) Olfactory and trigeminal event-related potentials in migraine. Cephalalgia 20:621–631CrossRefGoogle Scholar
  34. 34.
    Abdellatif MK, Fouad MM (2018) Effect of duration and severity of migraine on retinal nerve fiber layer, ganglion cell layer, and choroidal thickness. Eur J Ophthalmol.
  35. 35.
    Szabó N, Faragó P, Király A, Veréb D, Csete G, Tóth E, Kocsis K, Kincses B, Tuka B, Párdutz Á, Szok D, Tajti J, Vécsei L, Kincses ZT (2018) Evidence for plastic processes in migraine with aura: a diffusion weighted MRI study. Front Neuroanat 11:138. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hummel T, Urbig A, Huart C, Duprez T, Rombaux P (2015) Volume of olfactory bulb and depth of olfactory sulcus in 378 consecutive patients with olfactoryloss. J Neurol 262:1046–1051CrossRefGoogle Scholar
  37. 37.
    Royet JP, Plailly J (2004) Lateralization of olfactory processes. Chem Senses 29:731–745CrossRefGoogle Scholar
  38. 38.
    Demarquay G, Royet JP, Mick G, Ryvlin P (2008) Olfactory hypersensitivity in migraineurs: a H(2)(15)O-PET study. Cephalalgia 28:1069–1080CrossRefGoogle Scholar
  39. 39.
    Pascual B, Masdeu JC, Hollenbeck M, Makris N, Insausti R, Ding SL, Dickerson BC (2015) Large-scale brain networks of the human left temporal pole: a functional connectivity MRI study. Cereb Cortex 25:680–702CrossRefGoogle Scholar
  40. 40.
    Tanik N, Serin HI, Celikbilek A, Inan LE, Gundogdu F (2016) Associations of olfactory bulb and depth of olfactory sulcus with basal ganglia and hippocampus in patients with Parkinson’s disease. Neurosci Lett 620:111–114CrossRefGoogle Scholar
  41. 41.
    Huart C, Rombaux P, Hummel T (2013) Plasticity of the human olfactory system: the olfactory bulb. Molecules 18:11586–11600CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurologyBozok University Medical SchoolYozgatTurkey
  2. 2.Department of RadiologyBozok University Medical SchoolYozgatTurkey
  3. 3.Department of NeurologyMinistry of Health Ankara Research and Training HospitalAnkaraTurkey

Personalised recommendations