Advertisement

Neurological Sciences

, Volume 39, Issue 12, pp 2033–2041 | Cite as

Methylenetetrahydrofolate reductase C677T polymorphism and susceptibility to epilepsy

  • Vandana Rai
  • Pradeep Kumar
Review Article
  • 75 Downloads

Abstract

Background

Methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism was reported as risk factor for multiple diseases due to its role in conversion of homocysteine to methionine. The aim of the present meta-analysis was to find out the validity of association of C677T polymorphism with epilepsy susceptibility.

Methods

Pubmed, Science Direct, Springer Link and Google Scholar, databases were searched for relevant studies up to January, 31, 2018. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) were performed using five genetic models. All statistical analysis was done by MetaAnalyst and Mix programs.

Results

Except recessive model, significant association was found between MTHFR C677T polymorphism and epilepsy risk in other four genetic models (T vs C: OR = 1.29, 95% CI = 1.08–1.52, p = 0.004; TT vs CC: OR = 1.48, 95% CI = 1.19–1.82, p = 0.0003; TT + CT vs CC: OR = 1.20, 95% CI = 1.05–1.38, p = 0.008; TT vs CT + CC: OR = 1.35, 95% CI = 1.11–1.62, p = 0.002). Similarly, in the subgroup analysis based on ethnicity, significant association was found in Asian (T vs C: OR = 1.85; 95% CI = 1.15–2.99; p = 0.03) and Caucasian populations (TT vs CC: OR = 1.38; 95% CI = 1.10–1.1.73; p = 0.005). No evidence of heterogeneity and publication bias was detected in present meta-analysis.

Conclusion

In conclusion, results of present meta-analysis suggested that 677T allele of MTHFR is significantly increases the epilepsy susceptibility.

Keywords

Epilepsy Polymorphism MTHFR C677T Homocysteine Meta-analysis 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Apeland T, Mansoor MA, Pentieva K, McNulty H, Strandjord RE (2003) Fasting and post-methionine loading concentrations of homocysteine, vitamin B2, and vitamin B6 in patients on antiepileptic drugs. Clin Chem 49:1005–1008CrossRefPubMedGoogle Scholar
  2. 2.
    Avoli M, D’Antuono M, Louvel J, Köhling R, Biagini G, Pumain R, D’Arcangelo G, Tancredi V (2002) Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro. Prog Neurobiol 68(3):167–207CrossRefPubMedGoogle Scholar
  3. 3.
    Bagos PG (2009) Plasminogen activator inhibitor-1 4G/5G and 5,10-methylenetetrahydrofolate reductase C677T polymorphisms in polycystic ovary syndrome. Mol Hum Reprod 15:19–26CrossRefPubMedGoogle Scholar
  4. 4.
    Balamuralikrishnan B, Balachandar V, Mohana Devi S, Karthic Kumar A, Mustaq Ahammed SAK, Sasikala K (2013) Cytogenetic evaluation in epilepsy patients correlated with MTHFR C677T gene mutation and frequency of homocysteine levels. WCN 333:e44–e45.  https://doi.org/10.1016/j.jns.2013.07.161 CrossRefGoogle Scholar
  5. 5.
    Baldelli E, Leo G, Andreoli N, Fuxe K, Biagini G, Agnati LF (2010) Homocysteine potentiates seizures and cell loss induced by pilocarpine treatment. NeuroMolecular Med 12(3):248–259CrossRefPubMedGoogle Scholar
  6. 6.
    Banerjee PN, Filippi D, Allen Hauser W (2009) The descriptive epidemiology of epilepsy-a review. Epilepsy Res 85(1):31–45CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bax L, Yu LM, Ikeda N, Tsuruta H, Moons KG (2006) Development and validation of MIX: comprehensive free software for meta-analysis of causal research data. BMC Med Res Methodol 6:50CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Belcastro V, Gorgone G, Italiano D, Oteri G, Caccamo D, Pisani LR et al (2007) Antiepileptic drugs and MTHFR polymorphisms influence hyper-homocysteinemia recurrence in epileptic patients. Epilepsia 48:1990–1994CrossRefPubMedGoogle Scholar
  9. 9.
    Belcastro V, Striano P, Gorgone G, Costa C, Ciampa C, Caccamo D, Pisani LR, Oteri G, Marciani MG, Aguglia U, Striano S, Ientile R, Calabresi P, Pisani F (2010) Hyperhomocysteinemia in epileptic patients on new antiepileptic drugs. Epilepsia 51:274–279CrossRefPubMedGoogle Scholar
  10. 10.
    Caccamo D, Condello S, Gorgone G, Crisafulli G, Belcastro V, Gennaro S, Striano P, Pisani F, Ientile R (2004) Screening for C677T and A1298C MTHFR polymorphisms in patients with epilepsy and risk of hyperhomocysteinemia. NeuroMolecular Med 6:117–126CrossRefPubMedGoogle Scholar
  11. 11.
    Cronin S, Furie KL, Kelly PJ (2005) Dose-related association of MTHFR 677T allele with risk of ischemic stroke: evidence from a cumulative meta-analysis. Stroke 36:1581–1587CrossRefPubMedGoogle Scholar
  12. 12.
    Curia G, Lucchi C, Vinet J, Gualtieri F, Marinelli C, Torsello A, Costantino L, Biagini G (2014) Pathophysiogenesis of mesial temporal lobe epilepsy: is prevention of damage antiepileptogenic? Curr Med Chem 21(6):663–688CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dean JC, Robertson Z, Reid V, Wang Q, Hailey H, Moore S et al (2008) A high frequency of the MTHFR 677C > T polymorphism in Scottish women with epilepsy: possible role in pathogenesis. Seizure 17:269–275CrossRefPubMedGoogle Scholar
  14. 14.
    den Heijer T, Vermeer SE, Clarke R, Oudkerk M, Koudstaal PJ, Hofman A, Breteler MMB (2003) Homocysteine and brain atrophy on MRI of non-demented elderly. Brain 126:170–175CrossRefGoogle Scholar
  15. 15.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188CrossRefPubMedGoogle Scholar
  16. 16.
    Diaz-Arrastia R (2000) Homocysteine and neurologic disease. Arch Neurol 57:1422–1427PubMedGoogle Scholar
  17. 17.
    Duncan JS, Sander JW, Sisodiya SM, Walker MC (2006) Adult epilepsy. Lancet 367:1087–1100CrossRefPubMedGoogle Scholar
  18. 18.
    Egger M, Smith DJ, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Engel J (2001) A proposed diagnostic scheme for people with epileptic seizures and epilepsy: report of the ILEA task force on classification and terminology. Epilepsia 42:796–803CrossRefPubMedGoogle Scholar
  20. 20.
    Flott-Rahmel B, Schurmann M, Schluff P, Fingerhut R, Musshoff U, Fowler B et al (1998) Homocysteic and homocysteine sulphinic acid exhibit excitotoxicity in organotypic cultures from rat brain. Eur J Pediatr 157(2):112–117CrossRefGoogle Scholar
  21. 21.
    Folbergrova J (1997) Anticonvulsant action of both NMDA and non-NMDA receptor antagonists against seizures induced by homocysteine in immature rats. Exp Neurol 145:442–450CrossRefPubMedGoogle Scholar
  22. 22.
    Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJH, den Heijer M, Kluijtmans LAJ, van den Heuve LP, Rozen R (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113CrossRefPubMedGoogle Scholar
  23. 23.
    Gorgone G, Caccamo D, Pisani LR, Curro M, Parisi G, Oteri G et al (2009) Hyperho-mocysteinemia in patients with epilepsy: does it play a role in the pathogenesis of brain atrophy? A preliminary report. Epilepsia 50:33–36CrossRefPubMedGoogle Scholar
  24. 24.
    Hegele RA, Tully C, Young TK, Connelly PW (1997) V677 mutation of methylenetetrahydrofolate reductases and cardiovascular disease in Canadian Inuit. Lancet 34:1221–1222CrossRefGoogle Scholar
  25. 25.
    Herrmann W, Herrmann M, Obeid R (2007) Hyperhomocysteinaemia: a critical review of old and new aspects. Curr Drug Metab 8:17–31CrossRefPubMedGoogle Scholar
  26. 26.
    Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Huemer M, Ausserer B, Graninger G, Hubmann M, Huemer C, Schlachter K (2005) Hyperhomocysteinemia in children treated with antiepileptic drugs is normalized by folic acid supplementation. Epilepsia 46:1677–1683CrossRefPubMedGoogle Scholar
  28. 28.
    Johnson MR, Sander JWAS (2001) The clinical impact of epilepsy genetics. J Neurol Neurosurg Psychiatry 70:428–430CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Karabiber H, Sonmezgoz E, Ozerol E, Yakinci C, Otlu B, Yologlu S (2003) Effects of valproate and carbamazepine on serum levels of homocysteine, vitamin B12,and folic acid. Brain and Development 25:113–115CrossRefPubMedGoogle Scholar
  30. 30.
    Kini U, Lee R, Jones A, Smith S, Ramsden S, Fryer A, Clayton-Smith J (2007) Influence of the MTHFR genotype on the rate of malformations following exposure to antiepileptic drugs in utero. Eur J Med Genet 50:411–420CrossRefPubMedGoogle Scholar
  31. 31.
    Kruman II, Culmsee C, Chan SL, Kruman Y, Guo Z, Penix L, Mattson MP (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 20:6920–6926CrossRefPubMedGoogle Scholar
  32. 32.
    Kubova H, Folbergrova J, Mares P (1995) Seizures induced by homocysteine in rats during ontogenesis. Epilepsia 36:750–756CrossRefPubMedGoogle Scholar
  33. 33.
    Kumar P, Yadav U, Rai V (2016) Methylenetetrahydrofolate reductase gene C677T polymorphism and breast cancer risk: evidence for genetic susceptibility. Meta Gene 6:2–84Google Scholar
  34. 34.
    Kwan P, Brodie MJ (2001) Neuropsychological effects of epilepsy and antiepileptic drugs. Lancet 357:216–222CrossRefPubMedGoogle Scholar
  35. 35.
    Lipton SA, Kim WK, Choi YB, Kumar S, D’Emilia DM, Rayudu PV et al (1997) Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A 94(11):5923–5928CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748PubMedGoogle Scholar
  37. 37.
    Marangos PJ, Loftus T, Wiesner J, Lowe T, Rossi E, Browne CE, Gruber HE (1990) Adenosinergic modulation of homocysteine-induced seizures in mice. Epilepsia 31(3):239–246CrossRefPubMedGoogle Scholar
  38. 38.
    Mattson MP, Shea TB (2003) Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26:137–146CrossRefPubMedGoogle Scholar
  39. 39.
    Munisamy M, Al-Gahtany M, Tripathi M, Subbiah (2015) Impact of MTHFR (C677T) gene polymorphism on antiepileptic drug monotherapy in North Indian epileptic population. Ann Saudi Med 35(1):51–57CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ono H, Sakamoto A, Mizoguchi N, Sakura N (2000) Methylenetetrahydrofolate reductase 677C>T and epilepsy. J Inherit Metab Dis 23:525–526CrossRefPubMedGoogle Scholar
  41. 41.
    Pepe G, Camacho Vanegas O, Giusti B, Brunelli T, Marcucci R, Attanasio M, Rickards O, de Stefano GF, Prisco D, Gensini GF, Abbate R (1998) Heterogeneity in world distribution of the thermolabile C677T mutation in 5,10-methylenetetrahydrofolate reductase. Am J Hum Genet 63:917–920CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Rai V (2011a) Polymorphism in folate metabolic pathway gene as maternal risk factor for down syndrome. Int J Biol Med Res 2(4):1055–1060Google Scholar
  43. 43.
    Rai V (2011b) Evaluation of methylenetetrahydrofolate reductase gene variant (C677T) as risk factor for bipolar disorder. Cell Mol Biol 57:1558–1566Google Scholar
  44. 44.
    Rai V (2014a) Methylenetetrahydrofolate reductase A1298C polymorphism and breast cancer risk: a meta-analysis of 33 studies. Ann Med Health Sci Res 4(6):841–851CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Rai V (2014b) Genetic polymorphisms of methylenetetrahydrofolate reductase (MTHFR) gene and susceptibility to depression in Asian population: a systematic meta-analysis. Cell Mol Biol 60(3):29–36PubMedGoogle Scholar
  46. 46.
    Rai V (2016a) Methylenetetrahydrofolate reductase C677T polymorphism and recurrent pregnancy loss risk in Asian population: a meta-analysis. Ind J Clin Biochem 31:402–413CrossRefGoogle Scholar
  47. 47.
    Rai V (2016b) Evaluation of the MTHFR C677T polymorphism as a risk factor for colorectal cancer in Asian populations. Asian Pac J Cancer Prev 16(18):8093–8100CrossRefGoogle Scholar
  48. 48.
    Rai V (2016c) Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and Alzheimer disease risk: a meta-analysis. Mol Neurobiol 54(2):1173–1186CrossRefPubMedGoogle Scholar
  49. 49.
    Rai V (2016d) Association of methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism with autism: evidence of genetic susceptibility. Metab Brain Dis 31:727–735CrossRefPubMedGoogle Scholar
  50. 50.
    Rai V (2017) Strong association of C677T polymorphism of methylenetetrahydrofolate reductase gene with nosyndromic cleft lip/palate (nsCL/P). Ind J Clin Biochem 33(1):5–15CrossRefGoogle Scholar
  51. 51.
    Rai V, Kumar P (2017) Methylenetetrahydrofolate reductase C677T polymorphism and risk of male infertility in Asian population. Ind J Clin Biochem 32(3):253–226CrossRefGoogle Scholar
  52. 52.
    Rai V, Yadav U, Kumar P, Yadav SK (2010) Methylenetetrahydrofolate reductase polymorphism (C677T) in Muslim population of Eastern Uttar Pradesh, India. Ind J Med Sci 64(5):219–223CrossRefGoogle Scholar
  53. 53.
    Rai V, Yadav U, Kumar P (2012) Genotype prevalence and allele frequencies of 5,10-methylenetetrahydrofolate reductase (MTHFR) C677T mutation in two caste groups of India. Cell Mol Biol 58:OL1695–OL1701PubMedGoogle Scholar
  54. 54.
    Rai V, Yadav U, Kumar P, Yadav SK (2013) Analysis of methionine synthase reductase polymorphism (A66G) in Indian Muslim population. Ind J Hum Genet 19(2):183–187CrossRefGoogle Scholar
  55. 55.
    Rubino E, Ferrero M, Rainero I, Binello E, Vaula G, Pinessi L (2007) Association of the C677T polymorphism in the MTHFR gene with migraine: a meta-analysis. Cephalalgia 29:807–808Google Scholar
  56. 56.
    Scheffer IE, Berkowic SF (2003) The genetics of human epilepsy. Trends Pharmacol Sci 24:428–433CrossRefPubMedGoogle Scholar
  57. 57.
    Scher AI, Wu H, Tsao JW, Blom HJ, Feit P, Nevin RL, Schwab KA (2011) MTHFR C677T genotype as a risk factor for epilepsy including post-traumatic epilepsy in a representative military cohort. J Neurotrauma 28:1739–1745CrossRefPubMedGoogle Scholar
  58. 58.
    Schurks M, Rist PM, Kurth T (2010) MTHFR 677C > T and ACE D/I polymorphisms in migraine: a systematic review and meta-analysis. Headache 50:588–599CrossRefPubMedGoogle Scholar
  59. 59.
    Sniezawska A, Dorszewska J, Rozycka A, Przedpelska-Ober E, Lianeri M, Jagodzinski PP, Kozubski W (2011) MTHFR, MTR, and MTHFD1 gene polymorphisms compared to homocysteine and asymmetric dimethylarginine concentrations and their metabolites in epileptic patients treated with antiepileptic drugs. Seizure 20:533–540CrossRefPubMedGoogle Scholar
  60. 60.
    Song P, Liu Y, Yu X, Wu J, Poon AN, Demaio A, Wang W, Rudan I, Chan KY (2017) Prevalence of epilepsy in China between 1990 and 2015: a systematic review and meta-analysis. J Glob Health 7(2):020706.  https://doi.org/10.7189/jogh.07.020706 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283(15):2008–2012CrossRefPubMedGoogle Scholar
  62. 62.
    Tamura T, Aiso K, Johnston KE, Black L, Faught E (2000) Homocysteine, folate, vitamin B12 and vitamin B6 in patients receiving antiepileptic drug monotherapy. Epilepsy Res 40:7–15CrossRefPubMedGoogle Scholar
  63. 63.
    Thurman DJ, Beghi E, Begley CE, Berg AT, Buchhalter JR, Ding D, Hesdorffer DC, Hauser WA, Kazis L, Kobau R, Kroner B, Labiner D, Liow K, Logroscino G, Medina MT, Newton CR, Parko K, Paschal A, Preux PM, Sander JW, Selassie A, Theodore W, Tomson T, Wiebe S, for the ILAE Commission on Epidemiology (2011) Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia 52:2–26CrossRefPubMedGoogle Scholar
  64. 64.
    Vilaseca MA, Monros E, Artuch R, Colome C, Farre C, Valls C et al (2000) Anti-epileptic drug treatment in children: hyperhomocysteinaemia, B-vitamins and the 677C!T mutation of the methylenetetrahydrofolate reductase gene. Eur J Paediatr Neurol 4:269–277CrossRefPubMedGoogle Scholar
  65. 65.
    Wallace BC, Dahabreh IJ, Trikalinos TA, Lau J, Trow P, Schmid CH (2013) Closing the gap between methodologists and end-users: R as a computational back-end. J Stat Software 49:1–15Google Scholar
  66. 66.
    World Health Organization (2001) International classification of functioning, disability and health. World Health Organization, GenevaGoogle Scholar
  67. 67.
    Xu YL, Li XX, Zhuang SJ, Guo SF, Xiang JP, Wang L et al (2018) Significant association of BDNF rs6265 G-->A polymorphism with susceptibility to epilepsy: a meta-analysis. Neuropsychiatr Dis Treat 14:1035–1046CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Yadav U, Kumar P, Rai V (2016a) Role of MTHFR A1298C gene polymorphism in the etiology of prostate cancer: a systematic review and updated meta-analysis. Egyptian J Med Hum Genet 17(2):141–148CrossRefGoogle Scholar
  69. 69.
    Yadav U, Kumar P, Gupta S, Rai V (2016b) Role of MTHFR C677T gene polymorphism in the susceptibility of schizophrenia: an updated meta-analysis. Asian J Psychiatry 20:41–51CrossRefGoogle Scholar
  70. 70.
    Yadav U, Kumar P, Gupta S, Rai V (2017) Distribution of MTHFR C677T gene polymorphism in healthy North Indian population and an updated meta-analysis. Ind J Clin Biochem 32(4):399–410CrossRefGoogle Scholar
  71. 71.
    Yoo JH, Hong SB (1999) A common mutation in the methylenetetrahydrofolate reductase gene is a determinant of hyperhomocysteinemia in epileptic patients receiving anticonvulsants. Metabolism 48:1047–1051CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Human Molecular Genetics Laboratory, Department of BiotechnologyVBS Purvanchal UniversityJaunpurIndia

Personalised recommendations