Advertisement

Neurological Sciences

, Volume 39, Issue 9, pp 1597–1602 | Cite as

Amyloid deposition and CBF patterns predict conversion of mild cognitive impairment to dementia

  • Takayuki Kikukawa
  • Takato Abe
  • Suzuka Ataka
  • Haruna Saito
  • Itsuki Hasegawa
  • Toshikazu Mino
  • Jun Takeuchi
  • Joji Kawabe
  • Yasuhiro Wada
  • Yasuyoshi Watanabe
  • Yoshiaki Itoh
Original Article

Abstract

Mild cognitive impairment (MCI) can include the transition from a normal state to dementia. To explore biomarkers for the development of dementia, we performed an 18-month follow-up study in 28 patients with amnestic MCI. Amyloid deposition was examined using PiB PET, and cerebral blood flow (CBF) was examined using SPECT. Cognitive function was periodically assessed. The rate of conversion to dementia was higher in the PiB-positive/equivocal group (74%) than in the PiB-negative group (33%) (p = 0.041). Perfusion SPECT was performed in 16 patients. MCI patients with an AD-characteristic pattern of reduced CBF had a higher PiB-positive/equivocal rate (82%) than those with a non-AD pattern (20%) (p = 0.018), and patients with an AD pattern had a higher conversion rate (82%) than those with a non-AD pattern (40%) (p = 0.094). Clinically, all PiB-positive converters were diagnosed as having Alzheimer’s disease (AD), whereas PiB-negative converters were thought to have some form of dementia other than AD. Amyloid PET is useful for predicting conversion to AD in MCI patients. A pattern analysis of perfusion SPECT findings might also be helpful for predicting conversion to AD, but with a lower specificity.

Keywords

Alzheimer’s disease Mild cognitive impairment Pittsburg compound B Positron emission tomography Perfusion SPECT 

Notes

Authors’ contributions

All the authors have approved the manuscript and agree with its submission.

Compliance with ethical standards

The present clinical study design was approved by the research ethics committee of the Osaka City University Graduate School of Medicine (IRB# 689). Written consent was obtained from all the study participants or from their next of kin.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Boyle PA, Wilson RS, Aggarwal NT, Tang Y, Bennett DA (2006) Mild cognitive impairment: risk of Alzheimer disease and rate of cognitive decline. Neurology 67(3):441–445CrossRefPubMedGoogle Scholar
  2. 2.
    Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B (2001) Current concepts in mild cognitive impairment. Arch Neurol 58(12):1985–1992CrossRefPubMedGoogle Scholar
  3. 3.
    Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergstrom M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Langstrom B (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol 55(3):306–319CrossRefPubMedGoogle Scholar
  4. 4.
    Ikonomovic MD, Klunk WE, Abrahamson EE, Mathis CA, Price JC, Tsopelas ND, Lopresti BJ, Ziolko S, Bi W, Paljug WR, Debnath ML, Hope CE, Isanski BA, Hamilton RL, DeKosky ST (2008) Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain 131(Pt 6):1630–1645CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Devanand DP, Liu X, Tabert MH, Pradhaban G, Cuasay K, Bell K, de Leon MJ, Doty RL, Stern Y, Pelton GH (2008) Combining early markers strongly predicts conversion from mild cognitive impairment to Alzheimer’s disease. Biol Psychiatry 64(10):871–879CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Klunk WE, Mathis CA, Price JC, Lopresti BJ, DeKosky ST (2006) Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain 129(Pt 11):2805–2807CrossRefPubMedGoogle Scholar
  7. 7.
    Forsberg A, Engler H, Almkvist O, Blomquist G, Hagman G, Wall A, Ringheim A, Langstrom B, Nordberg A (2008) PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging 29(10):1456–1465CrossRefPubMedGoogle Scholar
  8. 8.
    Koivunen J, Scheinin N, Virta JR, Aalto S, Vahlberg T, Nagren K, Helin S, Parkkola R, Viitanen M, Rinne JO (2011) Amyloid PET imaging in patients with mild cognitive impairment: a 2-year follow-up study. Neurology 76(12):1085–1090CrossRefPubMedGoogle Scholar
  9. 9.
    Okello A, Koivunen J, Edison P, Archer HA, Turkheimer FE, Nagren K, Bullock R, Walker Z, Kennedy A, Fox NC, Rossor MN, Rinne JO, Brooks DJ (2009) Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology 73(10):754–760CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Davison CM, O’Brien JT (2014) A comparison of FDG-PET and blood flow SPECT in the diagnosis of neurodegenerative dementias: a systematic review. Int J Geriatr Psychiatry 29(6):551–561CrossRefPubMedGoogle Scholar
  11. 11.
    Pimlott SL, Ebmeier KP (2007) SPECT imaging in dementia. Br J Radio 80 Spec No 2:S153–S159CrossRefGoogle Scholar
  12. 12.
    Jagust W, Thisted R, Devous MD Sr, Van Heertum R, Mayberg H, Jobst K, Smith AD, Borys N (2001) SPECT perfusion imaging in the diagnosis of Alzheimer’s disease: a clinical-pathologic study. Neurology 56(7):950–956CrossRefPubMedGoogle Scholar
  13. 13.
    Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Backman L, Albert M, Almkvist O, Arai H, Basun H, Blennow K, de Leon M, DeCarli C, Erkinjuntti T, Giacobini E, Graff C, Hardy J, Jack C, Jorm A, Ritchie K, van Duijn C, Visser P, Petersen RC (2004) Mild cognitive impairment—beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment. J Intern Med 256(3):240–246CrossRefPubMedGoogle Scholar
  14. 14.
    McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):263–269CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    T. Mino, H. Saito, J. Takeuchi, K. Ito, A. Takeda, S. Ataka, S. Shiomi, Y. Wada, Y. Watanabe, Y. Itoh (2016) Cerebral blood flow abnormality in clinically diagnosed Alzheimer’s disease patients with or without amyloid β accumulation on positron emission tomography. Neurol Clin Neurosci 5(2):55–59CrossRefGoogle Scholar
  16. 16.
    Jagust WJ, Bandy D, Chen K, Foster NL, Landau SM, Mathis CA, Price JC, Reiman EM, Skovronsky D, Koeppe RA, I. Alzheimer’s Disease Neuroimaging (2010) The Alzheimer’s disease neuroimaging initiative positron emission tomography core. Alzheimers Dement 6(3):221–229CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA, Chen W, Czernin J, Rapoport SI, Pietrini P, Alexander GE, Schapiro MB, Jagust WJ, Hoffman JM, Welsh-Bohmer KA, Alavi A, Clark CM, Salmon E, de Leon MJ, Mielke R, Cummings JL, Kowell AP, Gambhir SS, Hoh CK, Phelps ME (2001) Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA 286(17):2120–2127CrossRefPubMedGoogle Scholar
  18. 18.
    Johnson KA, Minoshima S, Bohnen NI, Donohoe KJ, Foster NL, Herscovitch P, Karlawish JH, Rowe CC, Carrillo MC, Hartley DM, Hedrick S, Pappas V, Thies WH (2013) Appropriate use criteria for amyloid PET: a report of the amyloid imaging task force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer’s Association. J Nucl Med 54(3):476–490CrossRefPubMedGoogle Scholar
  19. 19.
    Busse A, Hensel A, Guhne U, Angermeyer MC, Riedel-Heller SG (2006) Mild cognitive impairment: long-term course of four clinical subtypes. Neurology 67(12):2176–2185CrossRefPubMedGoogle Scholar
  20. 20.
    Rasquin SM, Lodder J, Visser PJ, Lousberg R, Verhey FR (2005) Predictive accuracy of MCI subtypes for Alzheimer’s disease and vascular dementia in subjects with mild cognitive impairment: a 2-year follow-up study. Dement Geriatr Cogn Disord 19(2–3):113–119CrossRefPubMedGoogle Scholar
  21. 21.
    Park SJ, Lee JE, Lee KS, Kim JS (2018) Comparison of odor identification among amnestic and non-amnestic mild cognitive impairment, subjective cognitive decline, and early Alzheimer’s dementia. Neurol Sci 39(3):557–564CrossRefPubMedGoogle Scholar
  22. 22.
    Yamada M, Itoh Y, Sodeyama N, Suematsu N, Otomo E, Matsushita M, Mizusawa H (2001) Senile dementia of the neurofibrillary tangle type: a comparison with Alzheimer’s disease. Dement Geriatr Cogn Disord 12(2):117–126CrossRefPubMedGoogle Scholar
  23. 23.
    Alegret M, Cuberas-Borros G, Vinyes-Junque G, Espinosa A, Valero S, Hernandez I, Roca I, Ruiz A, Rosende-Roca M, Mauleon A, Becker JT, Castell-Conesa J, Tarraga L, Boada M (2012) A two-year follow-up of cognitive deficits and brain perfusion in mild cognitive impairment and mild Alzheimer’s disease. J Alzheimers Dis 30(1):109–120CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  • Takayuki Kikukawa
    • 1
  • Takato Abe
    • 1
  • Suzuka Ataka
    • 1
  • Haruna Saito
    • 1
  • Itsuki Hasegawa
    • 1
  • Toshikazu Mino
    • 1
  • Jun Takeuchi
    • 1
  • Joji Kawabe
    • 2
  • Yasuhiro Wada
    • 3
  • Yasuyoshi Watanabe
    • 3
  • Yoshiaki Itoh
    • 1
  1. 1.Department of NeurologyOsaka City University Graduate School of MedicineOsakaJapan
  2. 2.Department of Nuclear MedicineOsaka City University Graduate School of MedicineOsakaJapan
  3. 3.Molecular Probe Dynamics LaboratoryRIKEN Center for Life Science TechnologiesKobeJapan

Personalised recommendations