Functional MRI and laser-evoked potentials evaluation in Charcot-Marie-Tooth syndrome

  • Simona De Salvo
  • Lilla Bonanno
  • Roberto Giorgianni
  • Nunzio Muscarà
  • Francesco Freni
  • Fabrizia Caminiti
  • Demetrio Milardi
  • Placido Bramanti
  • Silvia Marino
Original Article
  • 4 Downloads

Abstract

Charcot-Marie-Tooth (CMT) disease is a genetically heterogeneous group of disorders. Pain is a less common symptom complained by CMT patients. We described a case of a 39-year-old male patient affect by Charcot-Marie-Tooth (CMT) disease compared to five healthy controls (HC), to assess the sensory and the nociceptive pathways by using LEPs recording associated to fMRI examination, to find an “objective” marker which could be used in the management of CMT patient. The nociceptive system was evaluated by laser-evoked potentials (LEPs). Moreover, fMRI (functional magnetic resonance imaging) examination, by using laser stimuli, was performed. LEPs’ examination showed an increase of latency and an amplitude reduction respect to HC. The laser stimulation during fMRI showed a decreased cortical activations if compared to HC. The originality of this paper, although limited to a single case, resides in a detailed evaluation of CMT1 patient performed by using neurophysiologic and neuroimaging methods to investigate extensively the sensory nociceptive pathways.

Keywords

Charcot-Marie-Tooth fMRI Laser-evoked potentials Neuroimaging Nociceptive system Pain 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Krajewski KM, Lewis RA, Fuerst DR et al (2000) Neurological dysfunction and axonal degeneration in Charcot-Marie-Tooth disease type 1A. Brain 123(Pt 7):1516–1527CrossRefPubMedGoogle Scholar
  2. 2.
    Padua L, Cavallaro T, Pareyson D, Quattrone A, Vita G, Schenone A (2008) Charcot-Marie-Tooth and pain: correlations with neurophysiological, clinical, and disability findings. Neurol Sci 29:193–194CrossRefPubMedGoogle Scholar
  3. 3.
    Truini A, Biasiotta A, La Cesa S et al (2010) Mechanisms of pain in distal symmetric polyneuropathy: a combined clinical and neurophysiological study. Pain 150:516–521CrossRefPubMedGoogle Scholar
  4. 4.
    Zanatta P, Messerotti Benvenuti S, Baldanzi F, Bendini M, Saccavini M, Tamari W, Palomba D, Bosco E (2012) Pain-related somatosensory evoked potentials and functional brain magnetic resonance in the evaluation of neurologic recovery after cardiac arrest: a case study of three patients. Scand J Trauma Resusc Emerg Med 20:22CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Valeriani M, Pazzaglia C, Cruccu G, Truini A (2012) Clinical usefulness of laser evoked potentials. Neurophysiol Clin 42:345–353CrossRefPubMedGoogle Scholar
  6. 6.
    Jenkinson M, Bannister P, Brady J, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17:825–841CrossRefPubMedGoogle Scholar
  7. 7.
    Smith S (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155CrossRefPubMedGoogle Scholar
  8. 8.
    Friston KJ, Worsley KJ, Frackowiak RSJ, Mazziotta JC, Evans AC (1994) Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp 1:214–220Google Scholar
  9. 9.
    Haggard P, Iannetti GD, Longo MR (2013) Spatial sensory organization and body representation in pain perception. Curr Biol 23:R164–R176CrossRefPubMedGoogle Scholar
  10. 10.
    Cruccu G, Aminof MJ, Curio G et al (2008) Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol 119:1705–1719CrossRefPubMedGoogle Scholar
  11. 11.
    De Salvo S, Naro A, Bonanno L et al (2015) Assessment of nociceptive system in vegetative and minimally conscious state by using laser evoked potentials. Brain Inj 29(12):1467–1474CrossRefPubMedGoogle Scholar
  12. 12.
    Garcia-Larrea L, Perchet C, Creac'h C, Convers P, Peyron R, Laurent B, Mauguiere F, Magnin M (2010) Operculo-insular pain (parasylvian pain): a distinct central pain syndrome. Brain 133:2528–2539CrossRefPubMedGoogle Scholar
  13. 13.
    Legrain V, Iannetti GD, Plaghki L, Mouraux A (2011) The pain matrix reloaded: a salience detection system for the body. Prog Neurobiol 93(1):111–124CrossRefPubMedGoogle Scholar
  14. 14.
    Pazzaglia C, Vollono C, Ferraro D, Virdis D, Lupi V, le Pera D, Tonali P, Padua L, Valeriani M (2010) Mechanisms of neuropathic pain in patients with Charcot-Marie-Tooth 1 A: a laser-evoked potential study. Pain 149(2):379–385CrossRefPubMedGoogle Scholar
  15. 15.
    Pelayo-Negro AL, Gallardo E, García A, Sánchez-Juan P, Infante J, Berciano J (2014) Evolution of Charcot-Marie-Tooth disease type 1A duplication: a 2-year clinico-electrophysiological and lower-limb muscle MRI longitudinal study. J Neurol 261(4):675–685CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  • Simona De Salvo
    • 1
  • Lilla Bonanno
    • 1
  • Roberto Giorgianni
    • 1
  • Nunzio Muscarà
    • 1
  • Francesco Freni
    • 2
  • Fabrizia Caminiti
    • 1
  • Demetrio Milardi
    • 3
  • Placido Bramanti
    • 1
  • Silvia Marino
    • 1
    • 3
  1. 1.Neuroimaging Laboratory - IRCCS Centro Neurolesi “Bonino-Pulejo”MessinaItaly
  2. 2.Department of OthologyUniversity of MessinaMessinaItaly
  3. 3.Department of Biomedical and Dental Sciences and Morphological and Functional ImagingUniversity of MessinaMessinaItaly

Personalised recommendations