Advertisement

Neurological Sciences

, Volume 39, Issue 7, pp 1175–1183 | Cite as

The association of NF2 (neurofibromin 2) gene polymorphism and the risk of medulloblastomas

  • Cailei Zhao
  • Qian Chen
  • Chunde Li
  • Jian Yang
  • Cong Li
  • Yangyang Zhou
  • Jianxiang Liao
Original Article

Abstract

To explore the relationship between NF2 promoter gene mutation and the risk of medulloblastomas (MBs). We collected tissues from 16 MB patients and 7 age-matched non-MB controls. Gene sequencing, qPCR (real-time quantitative polymerase chain reaction), IHC (immunohistochemistry), and WB (Western blot) were used to analyze the changes in the NF2 gene sequence and expression between patients and controls. We found that NF2 promoter gene mutations occurred in MB patients. The NF2 mRNA expression was higher in the controls than in patients (p = 0.03 < 0.05); however, the results of IHC and WB demonstrated that the NF2 protein expression was significantly higher in patients than in the controls (IHC: p = 0.0001; WB: p = 0.01). There was no significant difference in the CRL4 mRNA and protein levels. In addition, NF2 protein was mainly expressed in the nucleus in MB patients, while the NF2 protein was mainly expressed in the cytoplasm in the controls. NF2 promoter mutations exist in MB patients. NF2 mRNA expression was higher in controls than patients; whereas NF2 protein level was higher in patients than in controls.

Keywords

NF2 (neurofibromin2) Medulloblastomas (MB) Quantitative real-time PCR (qPCR) Western blot (WB) Promoter mutation 

Notes

Funding

No funding was received for this research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants or their guardians included in the study.

Supplementary material

10072_2018_3327_MOESM1_ESM.docx (20 kb)
ESM 1 (DOCX 19 kb)
10072_2018_3327_MOESM2_ESM.docx (18 kb)
ESM 2 (DOCX 18 kb)
10072_2018_3327_MOESM3_ESM.docx (27 kb)
ESM 3 (DOCX 27 kb)

References

  1. 1.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820.  https://doi.org/10.1007/s00401-016-1545-1 CrossRefPubMedGoogle Scholar
  2. 2.
    Macdonald TJ, Aguilera D, Castellino RC (2014) The rationale for targeted therapies in medulloblastoma. Neuro-Oncology 16(1):9–20CrossRefPubMedGoogle Scholar
  3. 3.
    Omuro A, Deangelis LM (2013) Glioblastoma and other malignant gliomas. J Am Med Assoc 310(17):1842–1850CrossRefGoogle Scholar
  4. 4.
    Giangaspero F, Wellek S, Masuoka J, Gessi M, Kleihues P, Ohgaki H (2006) Stratification of medulloblastoma on the basis of histopathological grading. Acta Neuropathol 112(112):5–12CrossRefPubMedGoogle Scholar
  5. 5.
    Mueller S, Chang S (2009) Pediatric brain tumors: current treatment strategies and future therapeutic approaches. Neurotherapeutics 6(3):570–586CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gupta T, Jalali R, Goswami S, Nair V, Moiyadi A, Epari S, Sarin R (2012) Early clinical outcomes demonstrate preserved cognitive function in children with average-risk medulloblastoma when treated with hyperfractionated radiation therapy. Int J Radiat Oncol Biol Phys 83(5):1534–1540CrossRefPubMedGoogle Scholar
  7. 7.
    Madeleine MM, Anttila T, Schwartz SM, Saikku P, Leinonen M, Carter JJ, Wurscher M, Johnson LG, Galloway DA, Daling JR (2007) Risk of cervical cancer associated with chlamydia trachomatis antibodies by histology, HPV type and HPV cofactors. Int J Cancer 120(3):650–655.  https://doi.org/10.1002/ijc.22325 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zanini C, Baci D, Mandili G, Leone M, Morra I, Forni M (2010) Proteomic profile modification of anaplastic medulloblastoma after in-vivo radiotherapy: a case study. J Cancer Ther 01(2):97–103CrossRefGoogle Scholar
  9. 9.
    Beltrami S, Kim R, Gordon J (2013) Neurofibromatosis type 2 protein, NF2: an uncoventional cell cycle regulator. Anticancer Res 33(1):1–11PubMedPubMedCentralGoogle Scholar
  10. 10.
    Mo JS, Park HW, Guan KL (2014) The hippo signaling pathway in stem cell biology and cancer. EMBO Rep 15(6):642–656PubMedPubMedCentralGoogle Scholar
  11. 11.
    Visser S, Yang X (2009) Identification of LATS transcriptional targets in HeLa cells using whole human genome oligonucleotide microarray. Gene 449(1–2):22–29PubMedGoogle Scholar
  12. 12.
    Yang W, Dong Q, Zhang Q, Li Z, Wang E, Qiu X (2010) Overexpression of yes-associated protein contributes to progression and poor prognosis of non-small-cell lung cancer. Cancer Sci 101(5):1279–1285CrossRefGoogle Scholar
  13. 13.
    Harvey K, Tapon N (2007) The Salvador-warts-hippo pathway—an emerging tumour-suppressor network. Nat Rev Cancer 7(3):182–191CrossRefPubMedGoogle Scholar
  14. 14.
    Yin F, Yu J, Zheng Y, Chen Q, Zhang N, Pan D (2013) Spatial organization of hippo signaling at the plasma membrane mediated by the tumor suppressor merlin/NF2. Cell 154(6):1342–1355CrossRefPubMedGoogle Scholar
  15. 15.
    Morrison H, Sherman LS, Legg J, Banine F, Isacke C, Haipek CA, Gutmann DH, Ponta H, Herrlich P (2001) The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev 15(8):968–980CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ongaratti BR, Silva CB, Trott G, Haag T, Leães CG, Ferreira NP, Oliveira MC, Pereiralima JF (2016) Expression of merlin, NDRG2, ERBB2, and c-MYC in meningiomas: relationship with tumor grade and recurrence. Braz J Med Biol Res = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica [et al] 49 (4)Google Scholar
  17. 17.
    Evans DG, Huson SM, Donnai D, Neary W, Blair V, Teare D, Newton V, Strachan T, Ramsden R, Harris R (1992) A genetic study of type 2 neurofibromatosis in the United Kingdom. I. Prevalence, mutation rate, fitness, and confirmation of maternal transmission effect on severity. J Med Genet 29(12):841–846CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bikhazi PH, Kim EJ, Attaie A, Bikhazi NB, Lalwani AK (1998) Germline screening of the NF-2 gene in families with unilateral vestibular schwannoma. Otolaryngol Head Neck Surg 117(2):1–6CrossRefGoogle Scholar
  19. 19.
    Kluwe L, Mautner V, Heinrich B, Dezube R, Jacoby LB, Friedrich RE, Maccollin M (2003) Molecular study of frequency of mosaicism in neurofibromatosis 2 patients with bilateral vestibular schwannomas. J Med Genet 40(2):109–114CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mérel P, Hoang-Xuan K, Sanson M, Moreau-Aubry A, Bijlsma EK, Lazaro C, Moisan JP, Resche F, Nishisho I, Estivill X (1995) Predominant occurrence of somatic mutations of the NF2 gene in meningiomas and schwannomas. Genes Chromosomes Cancer 13(3):211–216CrossRefPubMedGoogle Scholar
  21. 21.
    Lan K, Mautner VF (1996) A missense mutation in the NF2 gene results in moderate and mild clinical phenotypes of neurofibromatosis type 2. Hum Genet 97(2):224–227CrossRefGoogle Scholar
  22. 22.
    Fernandezl A, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S, Taylor MD, Kenney AM (2009) YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates sonic hedgehog-driven neural precursor proliferation. Genes Dev 23(23):2729–2741CrossRefGoogle Scholar
  23. 23.
    Okada T, Fg LLM (2005) Merlin/NF-2 mediates contact inhibition of growth by suppressing recruitment of Rac to the plasma membrane. J Cell Biol 171(2):361–371CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Reifenberger J, Wolter M, Weber R, Megahed M, Ruzicka T, Lichter P, Reifenberger G (1998) Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 58(9):1798–1803PubMedGoogle Scholar
  25. 25.
    Fernandez-L A, Squatrito M, Northcott P, Awan A, Holland EC, Taylor MD, Nahlé Z, Kenney AM (2012) Oncogenic YAP promotes radioresistance and genomic instability in medulloblastoma through IGF2-mediated Akt activation. Oncogene 31(15):1923–1937CrossRefPubMedGoogle Scholar
  26. 26.
    Li W, You L, Cooper J, Schiavon G, Pepe-Caprio A, Zhou L, Ishii R, Giovannini M, Hanemann CO, Long SB (2010) Merlin/NF2 suppresses tumorigenesis by inhibiting the E3 ubiquitin ligase CRL4(DCAF1) in the nucleus. Cell 140(4):477–490CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kenney LB, Yasui Y, Inskip PD, Hammond S, Neglia JP, Mertens AC, Meadows AT, Friedman D, Robison LL, Diller L (2004) Breast cancer after childhood cancer: a report from the childhood cancer survivor study. Ann Intern Med 141(8):590–597CrossRefPubMedGoogle Scholar
  28. 28.
    Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai Z-C, Guan K-L (2007) Inactivation of YAP oncoprotein by the hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21(21):2747–2761CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Deng L, Ma C, Yuan Q, Gao X, Yang C (2005) Total RNA extracted from brain tissue of rat by trizol reagent. J Luzhou Med College 28(6):505–506Google Scholar
  30. 30.
    Yang CS, Liang XL, Jian-Ying LI, Yan ZW, Huang F (2005) Effect of the mutation of promoter region in Wilson disease ATP7B gene on the expression of reporter gene. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 22(5):566–568PubMedGoogle Scholar
  31. 31.
    Vinagre J, Almeida A, Pópulo H, Batista R, Lyra J, Pinto V, Coelho R, Celestino R, Prazeres H, Lima L (2013) Frequency of TERT promoter mutations in human cancers. Nat Commun 4(4):405–415Google Scholar
  32. 32.
    Chen CH, Cao YL, Hu WC (2007) Apolipoprotein C-II promoter T→A substitution at position −190 affects on the transcription of the gene and its relationship to hyperlipemia. Biochem Biophys Res Commun 354(1):62–65CrossRefPubMedGoogle Scholar
  33. 33.
    Kendrick N (2014) A gene's mRNA level does not usually predict its protein level. Kendrick Laboratories, Inc, 1202 Ann St, Madison, WI 53713Google Scholar
  34. 34.
    Schulze KMM, Hanemann CO, Müller HW, Hanenberg H (2002) Transduction of wild-type merlin into human schwannoma cells decreases schwannoma cell growth and induces apoptosis. Hum Mol Genet 11(1):69–76CrossRefPubMedGoogle Scholar
  35. 35.
    Yi C, Troutman S, Fera D, Stemmerrachamimov A, Avila JL, Christian N, Persson NL, Shimono A, Speicher DW, Marmorstein R (2011) A tight junction-associated Merlin-angiomotin complex mediates Merlin’s regulation of mitogenic signaling and tumor suppressive functions. Cancer Cell 19(4):527–540CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ongaratti BR, Silva CB, Trott G, Haag T, Leães CG, Ferreira NP, Oliveira MC, Pereiralima JF (2016) Expression of merlin, NDRG2, ERBB2, and c-MYC in meningiomas: relationship with tumor grade and recurrence. Braz J Med Biol Res 49(4):e5125CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lau YK, Murray LB, Houshmandi SS, Xu Y, Gutmann DH, Yu Q (2008) Merlin is a potent inhibitor of glioma growth. Cancer Res 68(14):5733–5742CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Morrow KA, Das S, Meng E, Menezes ME, Bailey SK, Metge BJ, Buchsbaum DJ, Samant RS, Shevde LA (2016) Loss of tumor suppressor Merlin results in aberrant activation of Wnt/β-catenin signaling in cancer. Oncotarget 7(14):17991–18005CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Benhamouche S, Curto MI, Gladden AB, Liu CH, Giovannini M, Mcclatchey AI (2010) Nf2/Merlin controls progenitor homeostasis and tumorigenesis in the liver. Genes Dev 24(16):1718–1730CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Horiguchi A, Zheng R, Shen R, Nanus DM (2008) Inactivation of the NF2 tumor suppressor protein merlin in DU145 prostate cancer cells. Prostate 68(9):975–984CrossRefPubMedGoogle Scholar
  41. 41.
    Zhao Z, Lu T, Zhang N, Wang Y, He X, Zhang B, Huang J (2015) Study on the expression of neurofibromatosis 2 gene and its dinieal significance in primary liver cancer. Int J Clin Exp Med 7:535–538Google Scholar
  42. 42.
    Chou TT, Trojanowski JQ, Lee VM (1997) Neurotrophin signal transduction in medulloblastoma. J Neurosci Res 49(5):522–527CrossRefPubMedGoogle Scholar
  43. 43.
    Eberhart C, Tihan T, Burger PC (2000) Nuclear Localization and Mutation of beta-catenin in medulloblastomas. J Neuropathol Exp Neurol 59:333–337.  https://doi.org/10.1093/jnen/59.4.333 CrossRefPubMedGoogle Scholar
  44. 44.
    Bianchi AB, Testa JR (1995) High frequency of inactivating mutations in the neurofibromatosis type 2 gene (NF2) in primary malignant mesotheliomas. Proc Natl Acad Sci U S A 92(24):10854–10858CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.Department of RadiologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
  3. 3.Department of RadiologyShenzhen Children’s HospitalShenzhenChina
  4. 4.Department of NeurosurgeryShenzhen Children’s HospitalShenzhenChina
  5. 5.Department of Pediatric Neurosurgery, Beijing Tianan HospitalChina Capital Medical UniversityBeijingChina
  6. 6.Department of NeurologyShenzhen Children’s HospitalShenzhenChina

Personalised recommendations