Advertisement

Neurological Sciences

, Volume 38, Issue 8, pp 1353–1361 | Cite as

Autism, epilepsy, and synaptopathies: a not rare association

  • Roberto Keller
  • Roberta Basta
  • Luana Salerno
  • Maurizio Elia
Review Article

Abstract

Autism spectrum disorders (ASD) are neurodevelopmental disorders typically diagnosed in childhood, characterized by core social dysfunction, rigid and repetitive behaviors, restricted interests, and abnormal sensorial sensitivity. ASD belong to multifactorial diseases: both genetic and environmental factors have been considered as potential risk factors for their onset. ASD are often associated with neurological conditions: the co-occurrence of epilepsy is well documented and there is also evidence of a higher prevalence of EEG abnormalities with 4–86% of individuals with ASD presenting epileptiform or not epileptiform EEG abnormalities. The presence of epilepsy in people with ASD may be determined by several structural alterations, genetic conditions, or metabolic dysfunctions, known to play a role in the emergence of both epilepsy and autism. The purpose of this article is to discuss precisely such latter cause of the autism–epilepsy association, focusing specifically on those “synaptic genes,” whose mutation predisposes to both the diseases.

Keywords

Autism spectrum disorder Epilepsy Genetic Synapse 

References

  1. 1.
    Keller R (2016) I disturbi dello spettro autistico in adolescenza e in età adulta. Erikson, TrentoGoogle Scholar
  2. 2.
    Wang J, Barstein J, Ethridge L, Mosconi M, Takarae Y, Sweeney J (2013) Resting state EEG abnormalities in autism spectrum disorders. J Neurodev Disord 5:24. doi: 10.1186/1866-1955-5-24 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Fassio A, Patry L, Congia S, Onofri F, Piton A, Gauthier J, Pozzi D, Messa M, Defranchi E, Fadda M, Corradi A, Baldelli P, Lapointe L, St-Onge J, Meloche C, Mottron I, Valtorta F, Nguyen D, Rouleau G, Benfenati F, Cossette P (2011) SYN1 loss-of-function mutations in autism and partial epilepsy cause impaired synaptic function. Hum Mol Genet 20(12):2297–2307. doi: 10.1093/hmg/ddr122
  4. 4.
    Lee H, Kang HC, Kim SW, Kim YK, Chung HJ (2011) Characteristics of late-onset epilepsy and EEG findings in children with autism spectrum disorders. Korean Journal of Pediatrics 54(1):22–28. doi: 10.3345/kjp.2011.54.1.22 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tuchman R, Rapin I (2002) Epilepsy in autism. The Lancet Neurology 1(6):352–358. doi: 10.1016/S1474-4422(02)00160-6 CrossRefPubMedGoogle Scholar
  6. 6.
    Viscidi E, Triche E, Pescosolido M, McLean R, Joseph R, Spence S, Morrow E (2013) Clinical characteristics of children with autism spectrum disorder and co-occurring epilepsy. PLOSEONE 8(7):e67797. doi: 10.1371/journal.pone.0067797 CrossRefGoogle Scholar
  7. 7.
    Spence S, Schneider M (2009) The role of epilepsy and epileptiform EEGs in autism specrum disorders. Pediatric research the role of epilepsy and epileptiform EEGs in autism specrum disorders. Pediatr Res 65(6):599–606. doi: 10.1203/PDR.0b013e31819e7168 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lee BH, Smith T, Paciokowski A (2015) Autism spectrum disorder and epilepsy: disorders with a shared biology. Epilepsy Behav 47:191–201. doi: 10.1016/j.yebeh.2015.03.017 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hartley MAM, Weinstock A (2010) Autism spectrum disorder: correlation between aberrant behaviors, EEG abnormalities and seizures. Neurol Int 2(1):e10. doi: 10.4081/ni.2010.e10 CrossRefGoogle Scholar
  10. 10.
    Tuchman R (2015) Autism and cognition within epilepsy: social matters. Epilepsy currents 15(4):202–205. doi: 10.5698/1535-7511-15.4.202 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yasuhara A (2010) Correlation between EEG abnormalities and symptoms of autism spectrum disorder. Brain Dev 32(10):791–798. doi: 10.1016/j.braindev.2010.08.010 CrossRefPubMedGoogle Scholar
  12. 12.
    Boutros N, Lajiness O'NR, Zilgitt A, Richard A, Bowyer S (2015) EEG changes associated with autism spectrum disorders. Neuropsychiatric Electrophysiology 1:3. doi: 10.1186/s40810-014-0001-5 CrossRefGoogle Scholar
  13. 13.
    Tharp BR (2004) Epileptic encephalopathies and their relationship to developmental disorders: do spikes cause autism? Ment Retard Dev Disabil Res Rev 10(2):132–134. doi: 10.1002/mrdd.20025 CrossRefPubMedGoogle Scholar
  14. 14.
    Stafstrom CE, Benke TA (2015) Autism and epilepsy: exploring the relationship using experimental models. Epilepsy currents 15(4):206–210. doi: 10.5698/1535-7511-15.4.206 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Russo E, Follesa P, Citraro R, Camastra C, Donato A, Isola D et al (2014) The mTOR signaling pathway and neuronal stem/progenitor cell proliferation in the hippocampus are altered during the development of absence epilepsy in a genetic animal model. Neurol Sci 35(11):1793–1799CrossRefPubMedGoogle Scholar
  16. 16.
    Canitano R (2014) Autism with epilepsy: a neurodevelopmental association. OA Autism 2(1):7Google Scholar
  17. 17.
    McMahan J, Yu W, Yang J, Feng H, Helm M, McMaham E, Zhu X, Shin D, Huang Y (2015) Seizure-dependent mTOR activation in 5-HT neurons promotes autism-like behaviors in mice. Neurobialogy Diseases 73:296–306. doi: 10.1016/j.nbd.2014.10.004 CrossRefGoogle Scholar
  18. 18.
    Talos D, Sun H, Zhou X, Fitzgeralg E, Jackson M, Klein P, Lan V, Joseph A, Jensen F (2012) The interaction between early life epilepsy and autistic-like behavioral consequences: a role for the mammalian target of rapamycin (mTOR) pathway. PLOSONE 7(5):e35885. doi: 10.1371/journal.pone.0035885 CrossRefGoogle Scholar
  19. 19.
    Curatolo P, Moavero R (2012) mTOR inhibitors in tuberous sclerosis complex. Curr Neuropharmacol 10(4):404–415. doi: 10.2174/157015912804143595 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ars E, Kruyer H, Morell M, Pros E, Serra E, Ravella A, Estivill X, Lazaro C (2003) Recurrent mutations in the NF1 gene are common among neurofibromatosis type 1 patients. J Med Genet 40(6):e82. doi: 10.1136/jmg.40.6.e82 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rasmussen S., Friedman J. (2000) NF1 gene and neurofibromatosis 1. American Journal of Epidemiology 1;151(1):33-40Google Scholar
  22. 22.
    Johannessen C, Reczek E, James M, Brems H, Legius E, Cichowski K (2005) The NF1 tumor suppressor critically regulates TSC2 and mTOR. PNASS 102(24):8573–8578. doi: 10.1073/pnas.0503224102 CrossRefGoogle Scholar
  23. 23.
    lyu J-W, Yuan B, Cheng T-L, Qiu Z-L, Zhou W-H (2016) Reciprocal regulation of autism-related genes MeCP2 and PTEN via micro RNAs. Scientific Reports 6:20392. doi: 10.1038/srep20392 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Marchese M, Conti V, Valvo G, Moro F, Muratori F, Tancredi R, Santorelli F, Guerrini R, Sicca F (2014) Autism-epilepsy phenotype with macrocephaly suggests PTEN, but not GLIACAM, genetic screening. BMC Medical Genetics 15:26. doi: 10.1186/1471-2350-15-26 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    William M, Despenza T, Li M, Gulledge A, Luikart B (2015) Hyperactivity of newborn Pten knock-out neurons results from increased excitatory synaptic drive. J Neurosci 35(3):943–959. doi: 10.1523/JNEUROSCI.3144-14.2015 CrossRefGoogle Scholar
  26. 26.
    Christodoulou J. Ho G. (2001) MECP-related disorders. GeneReviewsGoogle Scholar
  27. 27.
    Guerrini R, Parrini E (2012) Epilepsy in Rett syndrome, and CDKL5- and FOXG1-gene-related encephalopathies. Epilepsia 53(12):2067–2078. doi: 10.1111/j. 1528-1167.2012.03656 CrossRefPubMedGoogle Scholar
  28. 28.
    Li Y, Wang H, Muffat J, Cheng AW, Orlando DA, Lovén J, Kwok S-m, Feldman DA, Bateup HS, Gao Q, Hockemeyer D, Mitalipova M, Lewis CA, Vander MG, Heiden MS, Young RA, Jaenisch R (2013) Global transcriptional and translational repression in human-embryonic stem-cell-derived Rett syndrome neurons. Cell Stem Cell 13(4):446–458. doi: 10.1016/j.stem.2013.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Shahbazian M, Antalffy B, Armstrom D, Zoghbi H (2002) Insight into Rett syndrome: MeCP2 levels display tissue and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet 11(2):115–124CrossRefPubMedGoogle Scholar
  30. 30.
    Szafranski P, Golla S, Jin W, Fang P, Hixson P, Matalon R, Kinney D, Bock H, Craigen W, Smith J, Bi W, Patel A, Cheung S, Bacino C, Stankiewicz P (2015) Neurodevelopmental and neurobehavioral characteristics in males and females with CDKL5 duplications. Eur J Hum Genet 23(7):915–921. doi: 10.1038/ejhg.2014.217 CrossRefPubMedGoogle Scholar
  31. 31.
    Posar A, Faggioli R, Visconti P (2015) Neurobehavioral phenotype in cyclin-dependent kinase-like 5 syndrome: case report and review of literature. J Pediatr Neurosci 10(3):258–260. doi: 10.4103/1817-1745.165685 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Figura MG, Coppola A, Bottitta M, Calabrese G, Grillo L, Luciano D, Del Gaudio L, Torniero C, Striano S, Elia M (2014) Seizures and EEG pattern in the 22q13.3 deletion syndrome: clinical report of six italian cases. Seizure 23(9):774–779. doi: 10.1016/j.seizure.2014.06.008 CrossRefPubMedGoogle Scholar
  33. 33.
    Peca J, Feliciano C, Ting G, Wang W, Wells M, Venkatramou T, Lascola C, Fu Z, Feng G (2011) Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472(7344):437–442. doi: 10.1038/nature09965 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Yi F, Danko T, Botelho SC, Patzke C, Pak CH, Werning M, Sudhof TC (2016) Autism-associated SHANK3 Haploinsufficiency causes Ih-channelopathy in human neurons. Science 352(6286):aaf2669. doi: 10.1126/science.aaf2669 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zwanenburg RJ, Ruiter SA, Van deu Heuvel ER, Flapper BC, Van Ravenswaaij-Arts CM (2016) Developmental phenotype in Phelan-McDermid (22q13.3 deletion) syndrome: a systematic and prospective study in 34 children. J Neurodev Disord 8:16. doi: 10.1186/s11689-016-9150-0 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Rodenas-Cuadrado P, Pietrafusa N, Francavilla T, La Neve A, Striano P, Vernes SC (2016) Characterization of CASPR2 deficiency disorder—a syndrome involving autism, epilepsy and language impairment. BMC Medical Genetics 17:8. doi: 10.1186/s12881-016-0272-8 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ovadia G, Shifman S (2011) The genetic variation of RELN expression in schizophrenia and bipolar disorder. PLOSONE 6(5):e19955. doi: 10.1371/journal.pone.0019955 CrossRefGoogle Scholar
  38. 38.
    Lintas C, Sacco R, Persico A (2016) Differential methylation at the RELN gene promoter in temporal cortex from autistic and typically developing post-puberal subjects. J Neurodev Disord 8:18. doi: 10.1186/s11689-016-9151-z CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lammert D, Howell B (2016) RELN mutations in autism spectrum disorder. Front Cell Neurosci 10:84. doi: 10.3389/fncel.2016.00084 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Jeyabalan N, Clement J (2016) SYNGAP1: mind the gap. Front Cell Neurosci 10:32. doi: 10.3389/fncel.2016.00032 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Paonessa F, Latifi S, Scarangella H, Cesca F, Benfenalti F (2012) Specificity protein 1 (Sp1)-dependent activation of the synapsin I gene (SYN1) is modulated by RE-1 silencing transcription factor (REST) and 5′-cytosine-phosphoguanine (Cpg) methylation. J Biol Chem 288(5):3227–3239. doi: 10.1074/jbc.M112.399782 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Greco B, Managò F, Tucci V, Kao H-T, Valtorta F, Benfenati F (2013) Autism-related behavioral abnormalities in synapsin knockout mice. Behav Brain Res 251:65–74. doi: 10.1016/j.bbr.2012.12.015 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Curran S, Ahn JW, Grayton H, Collier D, Ogilvie CM (2013) NRXN1 deletions identified by array comparative genome hybridisation in a clinical case series—further understanding of the relevance of NRXN1 to neurodevelopmental disorders. Journal of Molecular Psychiatry 1(1):4. doi: 10.1186/2049-9256-1-4 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Novarino G, El-Fishawy P, Kayserili H, Meguid N, Scott E, Schroth J, Silhavy J, Kara M, Khaili R, Ben-Omran T, Ercan SA, Hashish A, Senders S, Gupta A, Hashem H, Matern D, Gabriel S, Sweetman L, Rahimi Y, Harris R, State MW, Gleeson J (2012) Mutations in BCKD-kinase lead to a potentially treatable form of autism with epilepsy. Science 338(6105):394–397. doi: 10.1126/science.1224631 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Hamada N, Ito H, Iwamoto I, Morishita R, Tabata H, Nagata K (2015) Role of the cytoplasmic isoform of RBFOX1/A2BP1 is establishing the architecture of the developing cerebral cortex. Molecular Autism 6:56. doi: 10.1186/s13229-015-0049-5 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Weiss L, Escayg A, Kearney J, Trudean M, MacDonald B, Mori M, Reichert J, Buxbaum J, Meister M (2003) Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Mol Psychiatry 8(2):186–194CrossRefPubMedGoogle Scholar
  47. 47.
    Brooks-Kayal A (2010) Epilepsy and autism spectrum disorders: are the common developmental mechanism? Brain Developmental 32(9):731–738. doi: 10.1016/j.braindev.2010.04.010 CrossRefGoogle Scholar
  48. 48.
    Miano S, Bruni O, Aricò D et al (2010) Polysomnographic assessment of sleep disturbances in children with developmental disabilities and seizures. Neurol Sci 31:575. doi: 10.1007/s10072-010-0291-8 CrossRefPubMedGoogle Scholar
  49. 49.
    Di Gregorio E, Riberi E, Belligni EF, Biamino E, Spielmann M, Ala U, Calcia A, Bagnasco I, Carli D, Gai G, Giordano M, Guala A, Keller R, Mandrile G, Arduino C, Maffè A, Naretto VG, Sirchia F, Sorasio L, Ungari S, Zonta A, Zacchetti G, Talarico F, Pappi P, Cavalieri S, Giorgio E, Mancini C, Ferrero M, Brussino A, Savin E, Gandione M, Pelle A, Giachino DF, De Marchi M, Restagno G, Provero P, Silengo MC, Grosso E, Buxbaum JD, Pasini B, De Rubeis S, Brusco A, Ferrero GB (2017) CNVs analysis in a cohort of isolated and syndromic DD/ID reveals novel genomic disorders, position effects and candidate disease genes. Clin Genet. doi: 10.1111/cge.13009 PubMedGoogle Scholar
  50. 50.
    Frye R (2015) Metabolic and mitochondrial disorders associated with epilepsy in children with autismspectrum disorder. Epilepsy Behav. doi:  10.1016/j.yebeh.2014.08.134

Copyright information

© Springer-Verlag Italia 2017

Authors and Affiliations

  • Roberto Keller
    • 1
  • Roberta Basta
    • 1
  • Luana Salerno
    • 2
  • Maurizio Elia
    • 3
  1. 1.Adult autism Centre DSM ASL Città di TorinoTurinItaly
  2. 2.INS, Institute of NeurosciencesFlorenceItaly
  3. 3.Unit of Neurology and Clinical NeurophysiopathologyOasi Institute for Research on Mental Retardation and Brain Aging (IRCCS)TroinaItaly

Personalised recommendations