Neurological Sciences

, Volume 38, Issue 7, pp 1279–1286 | Cite as

Altered intra- and interregional synchronization in the absence of the corpus callosum: a resting-state fMRI study

  • Long Zuo
  • Shuangkun Wang
  • Junliang Yuan
  • Hua Gu
  • Yang Zhou
  • Tao Jiang
Original Article
  • 152 Downloads

Abstract

Agenesis of the corpus callosum (AgCC) can result in subtle to severe cognitive deficits. Individuals with impaired cognition often show abnormalities on resting-state functional magnetic resonance imaging (rs-fMRI). This study used rs-fMRI to investigate changes in regional homogeneity (ReHo) and functional connectivity (FC) among individuals with AgCC. AgCC individuals (n = 10) and age-, sex-, and education-matched healthy control subjects (n = 19) were included in this study. The ReHo values were calculated to represent spontaneous brain activity. The regions which showed altered ReHo were selected as seeds to compare FC with the whole brain between the AgCC group and the healthy control group. Compared with healthy control subjects, the AgCC individuals had increased ReHo in the left anterior cingulate gyrus, left rolandic operculum, and right precuneus and decreased ReHo in the right calcarine, right cingual gyrus and right cuneus gyrus. The right calcarine and the right lingual gyrus in the AgCC exhibited decreased FC with bilateral cuneus, superior occipital gyrus, Rolandic operculum, superior temporal gyrus, posterior central gyrus, and midcingulate gyrus.The right cuneus gyrus in the AgCC individuals exhibited decreased FC with the bilateral calcarine gyrus, left cuneus, and left superior occipital gyrus. Our study revealed several subareas within the visual cortex exhibited remarkable abnormalities of spontaneous brain activity and decreased FC with the higher-order cognitive cortex.The abnormalities of ReHo and FC in AgCC individuals may provide new insights into the neurological pathophysiology.

Keywords

Absence of the corpus callosum Functional magnetic resonance Regional homogeneity Functional connectivity 

Notes

Compliance with ethical standards

Financial support and sponsorship

This work was supported by the National Natural Science Foundation of China (Grant nos. 81541129, 81301016).

Conflicts of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Sheth RD, Schaefer GB, Keller GM, Hobbs GR, Ortiz O, Bodensteiner JB (1996) Size of the corpus callosum in cerebral palsy. Journal of neuroimaging : official journal of the American Society of Neuroimaging 6(3):180–183CrossRefGoogle Scholar
  2. 2.
    Paul LK, Brown WS, Adolphs R, Tyszka JM, Richards LJ, Mukherjee P, Sherr EH (2007) Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nat Rev Neurosci 8(4):287–299. doi: 10.1038/nrn2107 CrossRefPubMedGoogle Scholar
  3. 3.
    Siffredi V, Anderson V, Leventer RJ, Spencer-Smith MM (2013) Neuropsychological profile of agenesis of the corpus callosum: a systematic review. Dev Neuropsychol 38(1):36–57. doi: 10.1080/87565641.2012.721421 CrossRefPubMedGoogle Scholar
  4. 4.
    Mueller KL, Marion SD, Paul LK, Brown WS (2009) Bimanual motor coordination in agenesis of the corpus callosum. Behav Neurosci 123(5):1000–1011. doi: 10.1037/a0016868 CrossRefPubMedGoogle Scholar
  5. 5.
    Brown WS, Jeeves MA, Dietrich R, Burnison DS (1999) Bilateral field advantage and evoked potential interhemispheric transmission in commissurotomy and callosal agenesis. Neuropsychologia 37(10):1165–1180CrossRefPubMedGoogle Scholar
  6. 6.
    Marco EJ, Harrell KM, Brown WS, Hill SS, Jeremy RJ, Kramer JH, Sherr EH, Paul LK (2012) Processing speed delays contribute to executive function deficits in individuals with agenesis of the corpus callosum. Journal of the International Neuropsychological Society : JINS 18(3):521–529. doi: 10.1017/s1355617712000045 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sauerwein HC, Lassonde M (1994) Cognitive and sensori-motor functioning in the absence of the corpus callosum: neuropsychological studies in callosal agenesis and callosotomized patients. Behav Brain Res 64(1–2):229–240CrossRefPubMedGoogle Scholar
  8. 8.
    Bridgman MW, Brown WS, Spezio ML, Leonard MK, Adolphs R, Paul LK (2014) Facial emotion recognition in agenesis of the corpus callosum. J Neurodev Disord 6(1):32. doi: 10.1186/1866-1955-6-32 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhang H, Gao ZZ, Zang YF (2015) An fMRI study of local synchronization in different subfrequency bands during the continuous feedback of finger force. Biomed Res Int 2015:273126. doi: 10.1155/2015/273126 PubMedPubMedCentralGoogle Scholar
  10. 10.
    Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541CrossRefPubMedGoogle Scholar
  11. 11.
    Mennes M, Kelly C, Zuo XN, Di Martino A, Biswal BB, Castellanos FX, Milham MP (2010) Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity. NeuroImage 50(4):1690–1701. doi: 10.1016/j.neuroimage.2010.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Vincent DJ, Bloomer CJ, Hinson VK, Bergmann KJ (2006) The range of motor activation in the normal human cortex using bold FMRI. Brain Topogr 18(4):273–280. doi: 10.1007/s10548-006-0005-y CrossRefPubMedGoogle Scholar
  13. 13.
    Zang Y, Jiang T, Lu Y, He Y, Tian L (2004) Regional homogeneity approach to fMRI data analysis. NeuroImage 22(1):394–400. doi: 10.1016/j.neuroimage.2003.12.030 CrossRefPubMedGoogle Scholar
  14. 14.
    Shao Y, Cai FQ, Zhong YL, Huang X, Zhang Y, Hu PH, Pei CG, Zhou FQ, Zeng XJ (2015) Altered intrinsic regional spontaneous brain activity in patients with optic neuritis: a resting-state functional magnetic resonance imaging study. Neuropsychiatr Dis Treat 11:3065–3073. doi: 10.2147/ndt.s92968 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wu GF, Brier MR, Parks CA, Ances BM, Van Stavern GP (2015) An eye on brain integrity: acute optic neuritis affects resting state functional connectivity. Invest Ophthalmol Vis Sci 56(4):2541–2546. doi: 10.1167/iovs.14-16315 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dai XJ, Peng DC, Gong HH, Wan AL, Nie X, Li HJ, Wang YX (2014) Altered intrinsic regional brain spontaneous activity and subjective sleep quality in patients with chronic primary insomnia: a resting-state fMRI study. Neuropsychiatr Dis Treat 10:2163–2175. doi: 10.2147/ndt.s69681 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wang C, Ong JL, Patanaik A, Zhou J (2016) Spontaneous eyelid closures link vigilance fluctuation with fMRI dynamic connectivity states. Proc Natl Acad Sci U S A 113(34):9653–9658. doi: 10.1073/pnas.1523980113 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wu T, Long X, Zang Y, Wang L, Hallett M, Li K, Chan P (2009) Regional homogeneity changes in patients with Parkinson’s disease. Hum Brain Mapp 30(5):1502–1510. doi: 10.1002/hbm.20622 CrossRefPubMedGoogle Scholar
  19. 19.
    Polli A, Weis L, Biundo R, Thacker M, Turolla A, Koutsikos K, Chaudhuri KR, Antonini A (2016) Anatomical and functional correlates of persistent pain in Parkinson’s disease. Movement disorders : official journal of the Movement Disorder Society. doi: 10.1002/mds.26826 Google Scholar
  20. 20.
    Wang K, Jiang T, Yu C, Tian L, Li J, Liu Y, Zhou Y, Xu L, Song M, Li K (2008) Spontaneous activity associated with primary visual cortex: a resting-state FMRI study. Cerebral cortex (New York, NY : 1991) 18(3):697–704. doi: 10.1093/cercor/bhm105 Google Scholar
  21. 21.
    Billings-Gagliardi S, Chan-Palay V, Palay SL (1974) A review of lamination in area 17 of the visual cortex Macaca mulatta. J Neurocytol 3(5):619–629CrossRefPubMedGoogle Scholar
  22. 22.
    Roland PE, Skinhoj E (1981) Extrastriate cortical areas activated during visual discrimination in man. Brain Res 222(1):166–171CrossRefPubMedGoogle Scholar
  23. 23.
    Bittar RG, Ptito A, Dumoulin SO, Andermann F, Reutens DC (2000) Reorganisation of the visual cortex in callosal agenesis and colpocephaly. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia 7(1):13–15. doi: 10.1054/jocn.1998.0105 CrossRefGoogle Scholar
  24. 24.
    Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, Burgund ED, Grimes AL, Schlaggar BL, Petersen SE (2006) A core system for the implementation of task sets. Neuron 50(5):799–812. doi: 10.1016/j.neuron.2006.04.031 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RA, Fox MD, Snyder AZ, Vincent JL, Raichle ME, Schlaggar BL, Petersen SE (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci U S A 104(26):11073–11078. doi: 10.1073/pnas.0704320104 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23(10):475–483CrossRefPubMedGoogle Scholar
  27. 27.
    Hinkley LB, Marco EJ, Findlay AM, Honma S, Jeremy RJ, Strominger Z, Bukshpun P, Wakahiro M, Brown WS, Paul LK, Barkovich AJ, Mukherjee P, Nagarajan SS, Sherr EH (2012) The role of corpus callosum development in functional connectivity and cognitive processing. PLoS One 7(8):e39804. doi: 10.1371/journal.pone.0039804 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Owen JP, Li YO, Yang FG, Shetty C, Bukshpun P, Vora S, Wakahiro M, Hinkley LB, Nagarajan SS, Sherr EH, Mukherjee P (2013) Resting-state networks and the functional connectome of the human brain in agenesis of the corpus callosum. Brain connectivity 3(6):547–562. doi: 10.1089/brain.2013.0175 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bigler ED, Mortensen S, Neeley ES, Ozonoff S, Krasny L, Johnson M, Lu J, Provencal SL, McMahon W, Lainhart JE (2007) Superior temporal gyrus, language function, and autism. Dev Neuropsychol 31(2):217–238. doi: 10.1080/87565640701190841 CrossRefPubMedGoogle Scholar
  30. 30.
    Marien P, Brouns R, Engelborghs S, Wackenier P, Verhoeven J, Ceulemans B, De Deyn PP (2008) Cerebellar cognitive affective syndrome without global mental retardation in two relatives with Gillespie syndrome. Cortex; a journal devoted to the study of the nervous system and behavior 44(1):54–67. doi: 10.1016/j.cortex.2005.12.001 CrossRefPubMedGoogle Scholar
  31. 31.
    Karnath HO, Ferber S, Himmelbach M (2001) Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature 411(6840):950–953. doi: 10.1038/35082075 CrossRefPubMedGoogle Scholar
  32. 32.
    Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zollei L, Polimeni JR, Fischl B, Liu H, Buckner RL (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106(3):1125–1165. doi: 10.1152/jn.00338.2011 CrossRefPubMedGoogle Scholar
  33. 33.
    Owen JP, Li YO, Ziv E, Strominger Z, Gold J, Bukhpun P, Wakahiro M, Friedman EJ, Sherr EH, Mukherjee P (2013) The structural connectome of the human brain in agenesis of the corpus callosum. NeuroImage 70:340–355. doi: 10.1016/j.neuroimage.2012.12.031 CrossRefPubMedGoogle Scholar
  34. 34.
    Zeki S, Shipp S (1988) The functional logic of cortical connections. Nature 335(6188):311–317. doi: 10.1038/335311a0 CrossRefPubMedGoogle Scholar
  35. 35.
    Lee L, Harrison LM, Mechelli A (2003) The functional brain connectivity workshop: report and commentary. Network (Bristol, England) 14(2):R1–15CrossRefGoogle Scholar
  36. 36.
    Sheng K, Fang W, Su M, Li R, Zou D, Han Y, Wang X, Cheng O (2014) Altered spontaneous brain activity in patients with Parkinson's disease accompanied by depressive symptoms, as revealed by regional homogeneity and functional connectivity in the prefrontal-limbic system. PLoS One 9(1):e84705. doi: 10.1371/journal.pone.0084705 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Italia 2017

Authors and Affiliations

  • Long Zuo
    • 1
  • Shuangkun Wang
    • 1
  • Junliang Yuan
    • 2
  • Hua Gu
    • 1
  • Yang Zhou
    • 1
  • Tao Jiang
    • 1
  1. 1.Department of Radiology, Beijing Chao-Yang HospitalCapital Medical UniversityBeijingChina
  2. 2.Department of Neurology, Beijing Chao-Yang HospitalCapital Medical UniversityBeijingChina

Personalised recommendations