Neurological Sciences

, Volume 37, Issue 11, pp 1765–1771 | Cite as

The interplay of microRNAs and post-ischemic glutamate excitotoxicity: an emergent research field in stroke medicine

  • Alireza Majdi
  • Javad Mahmoudi
  • Saeed Sadigh-Eteghad
  • Mehdi Farhoudi
  • Siamak Sandoghchian Shotorbani
Review Article


Stroke is the second leading cause of death and the most common cause of adult disabilities among elderlies. It involves a complex series of mechanisms among which, excitotoxicity is of great importance. Also, miRNAs appear to play role in post-stroke excitotoxicity, and changes in their transcriptome occur right after cerebral ischemia. Recent data indicate that specific miRNAs such as miRNA-223, miRNA-181, miRNA-125a, miRNA-125b, miRNA-1000, miRNA-132 and miRNA-124a regulate glutamate neurotransmission and excitotoxicity during stroke. However, limitations such as poor in vivo stability, side effects and inappropriate biodistribution in miRNA-based therapies still exist and should be overcome before clinical application. Thence, investigation of the effect of application of these miRNAs after the onset of ischemia is a pivotal step for manipulating these miRNAs in clinical use. Given this, present review concentrates on miRNAs roles in post-ischemic stroke excitotoxicity.


Ischemic stroke Glutamate excitotoxicity MicroRNA NMDA receptors AMPA receptors 



We would like to extend our sincerest thanks and appreciation to the director of Neurosciences Research Center (NSRC) Professor Mehdi Farhoudi who helped us accomplish this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ovbiagele B, Nguyen-Huynh MN (2011) Stroke epidemiology: advancing our understanding of disease mechanism and therapy. Neurotherapeutics 8(3):319–329PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Feigin V, Krishnamurthi R (2014) Epidemiology of stroke. Oxford textbook of stroke and cerebrovascular disease, pp 1–289Google Scholar
  3. 3.
    Farhoudi M, Mehrvar K, Sadigh-Eteghad S, Majdi A, Mahmoudi J (2014) A review on molecular mechanisms of reocclusion following thrombolytic therapy in ischemic stroke patients. J Exp Clin Neurosci (JECNS) 1:1Google Scholar
  4. 4.
    Mukherjee D, Patil CG (2011) Epidemiology and the global burden of stroke. World Neurosurg 76(6):S85–S90PubMedCrossRefGoogle Scholar
  5. 5.
    Shiber JR, Fontane E, Adewale A (2010) Stroke registry: hemorrhagic vs ischemic strokes. Am J Emerg Med 28(3):331–333PubMedCrossRefGoogle Scholar
  6. 6.
    Wu P, Zuo X, Ji A (2012) Stroke-induced microRNAs: the potential therapeutic role for stroke (review). Exp Ther Med 3(4):571–576PubMedPubMedCentralGoogle Scholar
  7. 7.
    Guo Y, Li P, Guo Q, Shang K, Yan D, Du S, Lu Y (2014) Pathophysiology and biomarkers in acute ischemic stroke—a review. Trop J Pharm Res 12(6):1097–1105CrossRefGoogle Scholar
  8. 8.
    Shaafi S, Mahmoudi J, Pashapour A, Farhoudi M, Sadigh-Eteghad S, Akbari H (2014) Ketogenic diet provides neuroprotective effects against ischemic stroke neuronal damages. Adv Pharm Bull 4(Suppl 2):479–481. doi: 10.5681/apb.2014.071 PubMedPubMedCentralGoogle Scholar
  9. 9.
    Lai TW, Zhang S, Wang YT (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188PubMedCrossRefGoogle Scholar
  10. 10.
    Mehta SL, Manhas N, Raghubir R (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 54(1):34–66PubMedCrossRefGoogle Scholar
  11. 11.
    Harraz MM, Eacker SM, Wang X, Dawson TM, Dawson VL (2012) MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci 109(46):18962–18967PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Ouyang Y-B, Xu L, Yue S, Liu S, Giffard RG (2014) Neuroprotection by astrocytes in brain ischemia: importance of microRNAs. Neurosci Lett 565:53–58PubMedCrossRefGoogle Scholar
  13. 13.
    Rink C, Khanna S (2011) MicroRNA in ischemic stroke etiology and pathology. Physiol Genomics 43(10):521–528PubMedCrossRefGoogle Scholar
  14. 14.
    Liu D-Z, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X, Turner RJ, Jickling G, Sharp FR (2010) Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 30(1):92–101PubMedCrossRefGoogle Scholar
  15. 15.
    Fasanaro P, Greco S, Ivan M, Capogrossi MC, Martelli F (2010) MicroRNA: emerging therapeutic targets in acute ischemic diseases. Pharmacol Ther 125(1):92–104PubMedCrossRefGoogle Scholar
  16. 16.
    Yuan Y, Wang JY, Xu LY, Cai R, Chen Z, Luo BY (2010) MicroRNA expression changes in the hippocampi of rats subjected to global ischemia. J Clin Neurosci 17(6):774–778PubMedCrossRefGoogle Scholar
  17. 17.
    Lim K-Y, Chua J-H, Tan J-R, Swaminathan P, Sepramaniam S, Armugam A, Wong PT-H, Jeyaseelan K (2010) MicroRNAs in cerebral ischemia. Transl Stroke Res 1(4):287–303PubMedCrossRefGoogle Scholar
  18. 18.
    Verma P, Augustine GJ, Ammar M-R, Tashiro A, Cohen SM (2015) A neuroprotective role for microRNA miR-1000 mediated by limiting glutamate excitotoxicity. Nat Neurosci 18:379–385PubMedGoogle Scholar
  19. 19.
    Karr J, Vagin V, Chen K, Ganesan S, Olenkina O, Gvozdev V, Featherstone DE (2009) Regulation of glutamate receptor subunit availability by microRNAs. J Cell Biol 185(4):685–697PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Saba R, Störchel PH, Aksoy-Aksel A, Kepura F, Lippi G, Plant TD, Schratt GM (2012) Dopamine-regulated microRNA MiR-181a controls GluA2 surface expression in hippocampal neurons. Mol Cell Biol 32(3):619–632PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Wang Y, Zhang Y, Huang J, Chen X, Gu X, Wang Y, Zeng L, Yang G-Y (2014) Increase of circulating miR-223 and insulin-like growth factor-1 is associated with the pathogenesis of acute ischemic stroke in patients. BMC Neurol 14(1):77PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Eacker SM, Dawson TM, Dawson VL (2013) The interplay of microRNA and neuronal activity in health and disease. Front Cell Neurosci 7:1–9CrossRefGoogle Scholar
  23. 23.
    Kaur P, Liu F, Tan JR, Lim KY, Sepramaniam S, Karolina DS, Armugam A, Jeyaseelan K (2013) Non-coding RNAs as potential neuroprotectants against ischemic brain injury. Brain Sci 3(1):360–395PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Godwin JG, Ge X, Stephan K, Jurisch A, Tullius SG, Iacomini J (2010) Identification of a microRNA signature of renal ischemia reperfusion injury. Proc Natl Acad Sci 107(32):14339–14344PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Dhiraj DK, Chrysanthou E, Mallucci GR, Bushell M (2013) miRNAs-19b,-29b-2* and-339-5p show an early and sustained up-regulation in ischemic models of stroke. PLoS One 8(12):e83717. doi: 10.1371/journal.pone.0083717 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Dharap A, Vemuganti R (2010) Ischemic pre-conditioning alters cerebral microRNAs that are upstream to neuroprotective signaling pathways. J Neurochem 113(6):1685–1691PubMedPubMedCentralGoogle Scholar
  27. 27.
    Selvamani A, Sathyan P, Miranda RC, Sohrabji F (2012) An antagomir to microRNA Let7f promotes neuroprotection in an ischemic stroke model. PLoS One 7(2):e32662PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Zhang Y, Wang Z, Gemeinhart RA (2013) Progress in microRNA delivery. J Control Release 172(3):962–974PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Hutchison ER, Okun E, Mattson MP (2009) The therapeutic potential of microRNAs in nervous system damage, degeneration, and repair. Neuromol Med 11(3):153–161CrossRefGoogle Scholar
  30. 30.
    Kumar P, Wu H, McBride JL, Jung K-E, Kim MH, Davidson BL, Lee SK, Shankar P, Manjunath N (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448(7149):39–43PubMedCrossRefGoogle Scholar
  31. 31.
    Dharap A, Bowen K, Place R, Li L-C, Vemuganti R (2009) Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab 29(4):675–687PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Corey DR (2007) Chemical modification: the key to clinical application of RNA interference? J Clin Investig 117(12):3615PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Campbell K, Booth SA (2015) MicroRNA in neurodegenerative drug discovery: the way forward? Expert Opin Drug Discov 10(1):9–16PubMedCrossRefGoogle Scholar
  34. 34.
    Bretón RR, Rodríguez JCG (2012) Excitotoxicity and oxidative stress in acute ischemic stroke. Stroke 8:9Google Scholar
  35. 35.
    Arundine M, Tymianski M (2004) Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61(6):657–668PubMedCrossRefGoogle Scholar
  36. 36.
    X-x Dong, Wang Y, Z-h Qin (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30(4):379–387CrossRefGoogle Scholar
  37. 37.
    Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma P (2013) Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol 698(1):6–18PubMedCrossRefGoogle Scholar
  38. 38.
    Besancon E, Guo S, Lok J, Tymianski M, Lo EH (2008) Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. Trends Pharmacol Sci 29(5):268–275PubMedCrossRefGoogle Scholar
  39. 39.
    Prentice H, Modi JP, Wu J-Y (2015) Mechanisms of neuronal protection against excitotoxicity, endoplasmic reticulum stress, and mitochondrial dysfunction in stroke and neurodegenerative diseases. Oxid Med Cell Longev 2015:964518. doi: 10.1155/2015/964518 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Ouyang Y-B, Stary CM, Yang G-Y, Giffard R (2013) MicroRNAs: innovative targets for cerebral ischemia and stroke. Curr Drug Targets 14(1):90PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Ørom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′ UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30(4):460–471PubMedCrossRefGoogle Scholar
  42. 42.
    Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318(5858):1931–1934PubMedCrossRefGoogle Scholar
  43. 43.
    Vemuganti R (2010) The microRNAs and stroke: no need to be coded to be counted. Transl Stroke Res 1(3):158–160PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Nelson PT, Wang WX, Rajeev BW (2008) MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathol 18(1):130–138PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Lee S-T, Chu K, Jung K-H, Yoon H-J, Jeon D, Kang K-M, Park K-H, Bae E-K, Kim M, Lee SK (2010) MicroRNAs induced during ischemic preconditioning. Stroke 41(8):1646–1651PubMedCrossRefGoogle Scholar
  46. 46.
    Sepramaniam S, Tan J-R, Tan K-S, DeSilva DA, Tavintharan S, Woon F-P, Wang C-W, Yong F-L, Karolina D-S, Kaur P (2014) Circulating microRNAs as biomarkers of acute stroke. Int J Mol Sci 15(1):1418–1432PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Haneklaus M, Gerlic M, O’Neill L, Masters S (2013) miR-223: infection, inflammation and cancer. J Intern Med 274(3):215–226PubMedCrossRefGoogle Scholar
  48. 48.
    Jeyaseelan K, Lim KY, Armugam A (2008) MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 39:959–966PubMedCrossRefGoogle Scholar
  49. 49.
    Tan KS, Armugam A, Sepramaniam S, Lim KY, Setyowati KD, Wang CW, Jeyaseelan K (2009) Expression profile of microRNAs in young stroke patients. PLoS One 4(11):e7689PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Martel M-A, Ryan TJ, Bell KF, Fowler JH, McMahon A, Al-Mubarak B, Komiyama NH, Horsburgh K, Kind PC, Grant SG (2012) The subtype of GluN2 C-terminal domain determines the response to excitotoxic insults. Neuron 74(3):543–556PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Majid A (2014) Neuroprotection in stroke: past, present, and future. ISRN Neurol 2014:515716. doi: 10.1155/2014/515716 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Wojtowicz EE, Walasek MA, Broekhuis MJ, Weersing E, Ritsema M, Ausema A, Bystrykh LV, de Haan G (2014) MicroRNA-125 family members exert a similar role in the regulation of murine hematopoiesis. Exp Hematol 42(10):909–918 (e901) PubMedCrossRefGoogle Scholar
  53. 53.
    Le MT, Xie H, Zhou B, Chia PH, Rizk P, Um M, Udolph G, Yang H, Lim B, Lodish HF (2009) MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol Cell Biol 29(19):5290–5305PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Edbauer D, Neilson JR, Foster KA, Wang C-F, Seeburg DP, Batterton MN, Tada T, Dolan BM, Sharp PA, Sheng M (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65(3):373–384PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    von Engelhardt J, Coserea I, Pawlak V, Fuchs EC, Köhr G, Seeburg PH, Monyer H (2007) Excitotoxicity in vitro by NR2A-and NR2B-containing NMDA receptors. Neuropharmacology 53(1):10–17CrossRefGoogle Scholar
  56. 56.
    Mishima T, Mizuguchi Y, Kawahigashi Y, Takizawa T, Takizawa T (2007) RT-PCR-based analysis of microRNA (miR-1 and -124) expression in mouse CNS. Brain Res 1131:37–43PubMedCrossRefGoogle Scholar
  57. 57.
    Cao X, Pfaff SL, Gage FH (2007) A functional study of miR-124 in the developing neural tube. Genes Dev 21(5):531–536PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Morel L, Regan M, Higashimori H, Ng SK, Esau C, Vidensky S, Rothstein J, Yang Y (2013) Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J Biol Chem 288(10):7105–7116PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Sun Y, Luo Z-M, Guo X-M, Su D-F, Liu X (2015) An updated role of microRNA-124 in central nervous system disorders: a review. Front Cell Neurosci 9:193PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Ouyang Y-B, Xu L, Liu S, Giffard RG (2014) Role of astrocytes in delayed neuronal death: GLT-1 and its novel regulation by microRNAs. Glutamate and ATP at the interface of metabolism and signaling in the brain. Springer, Switzerland, pp 171–188Google Scholar
  61. 61.
    Zhu F, Liu J-L, Li J-P, Xiao F, Zhang Z-X, Zhang L (2014) MicroRNA-124 (miR-124) regulates Ku70 expression and is correlated with neuronal death induced by ischemia/reperfusion. J Mol Neurosci 52(1):148–155PubMedCrossRefGoogle Scholar
  62. 62.
    Sun Y, Gui H, Li Q, Luo ZM, Zheng MJ, Duan JL, Liu X (2013) MicroRNA-124 protects neurons against apoptosis in cerebral ischemic stroke. CNS Neurosci Ther 19(10):813–819PubMedGoogle Scholar
  63. 63.
    Doeppner TR, Doehring M, Bretschneider E, Zechariah A, Kaltwasser B, Müller B, Koch JC, Bähr M, Hermann DM, Michel U (2013) MicroRNA-124 protects against focal cerebral ischemia via mechanisms involving Usp14-dependent REST degradation. Acta Neuropathol 126(2):251–265PubMedCrossRefGoogle Scholar
  64. 64.
    Di Y, Lei Y, Yu F, Changfeng F, Song W, Xuming M (2014) MicroRNAs expression and function in cerebral ischemia reperfusion injury. J Mol Neurosci 53(2):242–250PubMedCrossRefGoogle Scholar
  65. 65.
    Weng H, Shen C, Hirokawa G, Ji X, Takahashi R, Shimada K, Kishimoto C, Iwai N (2011) Plasma miR-124 as a biomarker for cerebral infarction. Biomed Res 32(2):135–141PubMedCrossRefGoogle Scholar
  66. 66.
    Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Šestan N, Rakic P, Constantine-Paton M, Horvitz HR (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5(9):R68PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Ouyang Y-B, Lu Y, Yue S, Xu L-J, Xiong X-X, White RE, Sun X, Giffard RG (2012) miR-181 regulates GRP78 and influences outcome from cerebral ischemia in vitro and in vivo. Neurobiol Dis 45(1):555–563PubMedCrossRefGoogle Scholar
  68. 68.
    Hutchison ER, Kawamoto EM, Taub DD, Lal A, Abdelmohsen K, Zhang Y, Wood WH, Lehrmann E, Camandola S, Becker KG (2013) Evidence for miR-181 involvement in neuroinflammatory responses of astrocytes. Glia 61(7):1018–1028PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Moon J-m XuL, Giffard RG (2013) Inhibition of microRNA-181 reduces forebrain ischemia-induced neuronal loss. J Cereb Blood Flow Metab 33(12):1976–1982PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Stary CM, Giffard RG (2015) Advances in astrocyte-targeted approaches for stroke therapy: an emerging role for mitochondria and microRNAS. Neurochem Res 40(2):301–307PubMedCrossRefGoogle Scholar
  71. 71.
    Follert P, Cremer H, Béclin C (2014) MicroRNAs in brain development and function: a matter of flexibility and stability. Front Mol Neurosci 7:1–8CrossRefGoogle Scholar
  72. 72.
    Zhao L, Sun C, Xiong L, Yang Y, Gao Y, Wang L, Zuo H, Xu X, Dong J, Zhou H (2014) MicroRNAs: novel mechanism involved in the pathogenesis of microwave exposure on rats’ hippocampus. J Mol Neurosci 53(2):222–230PubMedCrossRefGoogle Scholar
  73. 73.
    Tognini P, Pizzorusso T (2012) MicroRNA212/132 family: molecular transducer of neuronal function and plasticity. Int J Biochem Cell Biol 44(1):6–10PubMedCrossRefGoogle Scholar
  74. 74.
    Conaco C, Otto S, Han J-J, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 103(7):2422–2427PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Wanet A, Tacheny A, Arnould T, Renard P (2012) miR-212/132 expression and functions: within and beyond the neuronal compartment. Nucleic Acids Res 40(11):4742–4753PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    O’Neill LA (2009) Boosting the brain’s ability to block inflammation via microRNA-132. Immunity 31(6):854–855PubMedCrossRefGoogle Scholar
  77. 77.
    Shaked I, Meerson A, Wolf Y, Avni R, Greenberg D, Gilboa-Geffen A, Soreq H (2009) MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 31(6):965–973PubMedCrossRefGoogle Scholar
  78. 78.
    Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci USA 102(45):16426–16431PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Nudelman AS, DiRocco DP, Lambert TJ, Garelick MG, Le J, Nathanson NM, Storm DR (2010) Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus 20(4):492–498PubMedPubMedCentralGoogle Scholar
  80. 80.
    Luikart BW, Bensen AL, Washburn EK, Perederiy JV, Su KG, Li Y, Kernie SG, Parada LF, Westbrook GL (2011) miR-132 mediates the integration of newborn neurons into the adult dentate gyrus. PLoS One 6(5):e19077–e19077PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kawashima H, Numakawa T, Kumamaru E, Adachi N, Mizuno H, Ninomiya M, Kunugi H, Hashido K (2010) Glucocorticoid attenuates brain-derived neurotrophic factor-dependent upregulation of glutamate receptors via the suppression of microRNA-132 expression. Neuroscience 165(4):1301–1311PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2016

Authors and Affiliations

  • Alireza Majdi
    • 1
  • Javad Mahmoudi
    • 1
  • Saeed Sadigh-Eteghad
    • 1
  • Mehdi Farhoudi
    • 1
  • Siamak Sandoghchian Shotorbani
    • 2
  1. 1.Neurosciences Research Center (NSRC)Tabriz University of Medical SciencesTabrizIran
  2. 2.Department of Immunology, Tabriz BranchIslamic Azad UniversityTabrizIran

Personalised recommendations