Skip to main content

Advertisement

Log in

Linking insulin with Alzheimer’s disease: emergence as type III diabetes

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) has characteristic neuropathological abnormalities including regionalized neurodegeneration, neurofibrillary tangles, amyloid beta (Aβ) deposition, activation of pro-apoptotic genes, and oxidative stress. As the brain functions continue to disintegrate, there is a decline in person’s cognitive abilities, memory, mood, spontaneity, and socializing behavior. A framework that sequentially interlinks all these phenomenons under one event is lacking. Accumulating evidence has indicated the role of insulin deficiency and insulin resistance as mediators of AD neurodegeneration. Herein, we reviewed the evidence stemming from the development of diabetes agent-induced AD animal model. Striking evidence has attributed loss of insulin receptor-bearing neurons to precede or accompany initial stage of AD. This state seems to progress with AD such that, in the terminal stages, it worsens and becomes global. Oxidative stress, tau hyperphosphorylation, APP-Aβ deposition, and impaired glucose and energy metabolism have all been linked to perturbation in insulin/IGF signaling. We conclude that AD could be referred to as “type 3 diabetes”. Moreover, owing to common pathophysiology with diabetes common therapeutic regime could be effective for AD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    CAS  PubMed  Google Scholar 

  2. Ashe KH, Zahs KR (2010) Probing the biology of Alzheimer’s disease in mice. Neuron 66:631–645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 29:353–356

    Article  Google Scholar 

  4. Gil-Bea FJ, Solas M, Solomon A, Mugueta C, Winblad B, Kivipelto M et al (2010) Insulin levels are decreased in the cerebrospinal fluid of women with prodomal Alzheimers disease. J Alzheimers Dis 22:405–413

    CAS  PubMed  Google Scholar 

  5. Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23:134–147

    Article  CAS  PubMed  Google Scholar 

  6. Craft S, Cholerton B, Baker LD (2013) Insulin and Alzheimer’s disease: untangling the web. J Alzheimers Dis 33:S263–S275

    PubMed  Google Scholar 

  7. Zhu X, Perry G, Smith MA (2005) Insulin signaling, diabetes mellitus and risk of Alzheimer disease. J Alzheimers Dis 7:81–84

    PubMed  Google Scholar 

  8. de la Monte SM, Wands JR (2005) Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis 7:45–61

    PubMed  Google Scholar 

  9. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R et al (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease-is this type 3 diabetes? J Alzheimers Dis 7:63–80

    CAS  PubMed  Google Scholar 

  10. Craft S (2012) Alzheimer disease: insulin resistance and AD—extending the translational path. Nat Rev Neurol 8:360–362

    Article  CAS  PubMed  Google Scholar 

  11. Iwangoff P, Armbruster R, Enz A, Meier-Ruge W (1980) Glycolytic enzymes from human autoptic brain cortex: normal aged and demented cases. Mech Ageing Dev 14:203–209

    Article  CAS  PubMed  Google Scholar 

  12. Schiöth HB, Craft S, Brooks SJ, Frey WH II, Benedict C (2012) Brain insulin signaling and Alzheimer’s disease: current evidence and future directions. Mol Neurobiol 46:4–10

    Article  PubMed Central  PubMed  Google Scholar 

  13. Havel PJ (2004) Update on adipocyte hormones regulation of energy balance and carbohydrate/lipid metabolism. Diabetes 53:S143–S151

    Article  CAS  PubMed  Google Scholar 

  14. Schwartz MW, Figlewicz DP, Baskin DG, Woods SC, Porte D Jr (1992) Insulin in the brain: a hormonal regulator of energy balance. Endocr Rev 13:387–414

    CAS  PubMed  Google Scholar 

  15. Havrankova J, Roth J, Brownstein M (1978) Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272:827–829

    Article  CAS  PubMed  Google Scholar 

  16. Margolis RU, Altszuler N (1967) Insulin in the cerebrospinal fluid. Nature 215:1375–1376

    Article  CAS  PubMed  Google Scholar 

  17. Boura-Halfon S, Zick Y (2009) Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am J Physiol Endocrinol Metab 296:E581–E591

    Article  CAS  PubMed  Google Scholar 

  18. Zhao W-Q, Alkon DL (2001) Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 177:125–134

    Article  CAS  PubMed  Google Scholar 

  19. Kern W, Peters A, Fruehwald-Schultes B, Deininger E, Born J, Fehm HL (2001) Improving influence of insulin on cognitive functions in humans. Neuroendocrinology 74:270–280

    Article  CAS  PubMed  Google Scholar 

  20. Nelson TJ, Sun M-K, Hongpaisan J, Alkon DL (2008) Insulin, PKC signaling pathways and synaptic remodeling during memory storage and neuronal repair. Eur J Pharmacol 585:76–87

    Article  CAS  PubMed  Google Scholar 

  21. Benedict C, Hallschmid M, Schmitz K, Schultes B, Ratter F, Fehm HL et al (2006) Intranasal insulin improves memory in humans: superiority of insulin aspart. Neuropsychopharmacology 32:239–243

    Article  PubMed  Google Scholar 

  22. Prolla TA, Mattson MP (2001) Molecular mechanisms of brain aging and neurodegenerative disorders: lessons from dietary restriction. Trends Neurosci 24:21–31

    Article  Google Scholar 

  23. Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D et al (2004) Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci USA 101:3100–3105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Watson G, Craft S (2004) Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer’s disease. Eur J Pharmacol 490:97–113

    Article  CAS  PubMed  Google Scholar 

  25. Frölich L, Blum-Degen D, Bernstein H-G, Engelsberger S, Humrich J, Laufer S et al (1998) Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm 105:423–438

    Article  PubMed  Google Scholar 

  26. Suzanne M, Wands JR (2008) Alzheimer’s disease is type 3 diabetes—evidence reviewed. J Diabetes Sci Technol 2:1101–1113

    Article  Google Scholar 

  27. Hoyer S (2004) Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 490:115–125

    Article  CAS  PubMed  Google Scholar 

  28. Cole GM, Frautschy SA (2007) The role of insulin and neurotrophic factor signaling in brain aging and Alzheimer’s Disease. Exp Gerontol 42:10–21

    Article  CAS  PubMed  Google Scholar 

  29. Liu X, Erikson C, Brun A (1996) Cortical synaptic changes and gliosis in normal aging, Alzheimer’s disease and frontal lobe degeneration. Dementia 7:128–134

    CAS  PubMed  Google Scholar 

  30. Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong C-X (2004) O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci USA 101:10804–10809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Watson GS, Craft S (2003) The role of insulin resistance in the pathogenesis of Alzheimer’s disease. CNS Drugs 17:27–45

    Article  CAS  PubMed  Google Scholar 

  32. Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC (2004) Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53:474–481

    Article  CAS  PubMed  Google Scholar 

  33. Tabet N (2006) Acetylcholinesterase inhibitors for Alzheimer’s disease: anti-inflammatories in acetylcholine clothing! Age Ageing 35:336–338

    Article  CAS  PubMed  Google Scholar 

  34. Akter K, Lanza EA, Martin SA, Myronyuk N, Rua M, Raffa RB (2011) Diabetes mellitus and Alzheimer’s disease: shared pathology and treatment? Br J Clin Pharmacol 71:365–376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. De la Monte S, Chen G, Rivera E, Wands J (2003) Neuronal thread protein regulation and interaction with microtubule-associated proteins in SH-Sy5y neuronal cells. Cell Mol Life Sci 60:2679–2691

    Article  PubMed  Google Scholar 

  36. Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A et al (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122:1316–1338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM (2005) Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimers Dis 8:247–268

    CAS  PubMed  Google Scholar 

  38. Alagiakrishnan K, Sankaralingam S, Ghosh M, Mereu L, Senior P (2013) Antidiabetic drugs and their potential role in treating mild cognitive impairment and Alzheimer’s disease. Discov Med 16:277–286

    PubMed  Google Scholar 

  39. Correia SC, Santos RX, Perry G, Zhu X, Moreira PI, Smith MA (2011) Insulin-resistant brain state: the culprit in sporadic Alzheimer’s disease? Ageing Res Rev 10:264–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Li L, Hölscher C (2007) Common pathological processes in Alzheimer disease and type 2 diabetes: a review. Brain Res Rev 56:384–402

    Article  CAS  PubMed  Google Scholar 

  41. Valente T, Gella A, Fernàndez-Busquets X, Unzeta M, Durany N (2010) Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer’s disease and diabetes mellitus. Neurobiol Dis 37:67–76

    Article  CAS  PubMed  Google Scholar 

  42. Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K et al (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336

    Article  CAS  PubMed  Google Scholar 

  43. Zhao W-Q, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ et al (2008) Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J 22:246–260

    Article  CAS  PubMed  Google Scholar 

  44. Ma Q-L, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ et al (2009) β-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 29:9078–9089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel J-C, Decker H et al (2012) An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease–associated Aβ oligomers. J Clin Invest 122:1339–1353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Lourenco MV, Clarke JR, Frozza RL, Bomfim TR, Forny-Germano L, Batista AF et al (2013) TNF-α mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer’s β-amyloid oligomers in mice and monkeys. Cell Metab 18:831–843

    Article  CAS  PubMed  Google Scholar 

  47. De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP et al (2009) Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Aβ oligomers. Proc Natl Acad Sci 106:1971–1976

    Article  PubMed Central  PubMed  Google Scholar 

  48. Walsh DM, Selkoe DJ (2007) Aβ oligomers—a decade of discovery. J Neurochem 101:1172–1184

    Article  CAS  PubMed  Google Scholar 

  49. Negash S, Bennett DA, Wilson RS, Schneider JA, Arnold SE (2011) Cognition and neuropathology in aging: multidimensional perspectives from the Rush Religious Orders Study and Rush Memory and Aging Project. Curr Alzheimer Res 8:336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    Article  CAS  PubMed  Google Scholar 

  51. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M et al (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Bjorklund NL, Reese LC, Sadagoparamanujam V, Ghirardi V, Woltjer RL, Taglialatela G (2012) Absence of amyloid beta oligomers at the postsynapse and regulated synaptic Zn2+ in cognitively intact aged individuals with Alzheimer’s disease neuropathology. Mol Neurodegener 7:23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE et al (2003) Alzheimer’s disease-affected brain: presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci 100:10417–10422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Fukumoto H, Tokuda T, Kasai T, Ishigami N, Hidaka H, Kondo M et al (2010) High-molecular-weight beta-amyloid oligomers are elevated in cerebrospinal fluid of Alzheimer patients. FASEB J 24:2716–2726

    Article  CAS  PubMed  Google Scholar 

  55. Ferreira ST, Vieira MN, De Felice FG (2007) Soluble protein oligomers as emerging toxins in Alzheimer’s and other amyloid diseases. IUBMB Life 59:332–345

    Article  CAS  PubMed  Google Scholar 

  56. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8:101–112

    Article  CAS  PubMed  Google Scholar 

  57. Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M et al (2007) Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27:796–807

    Article  CAS  PubMed  Google Scholar 

  58. Jurgensen S, Antonio LL, Mussi GE, Brito-Moreira J, Bomfim TR, De Felice FG et al (2011) Activation of D1/D5 dopamine receptors protects neurons from synapse dysfunction induced by amyloid-beta oligomers. J Biol Chem 286:3270–3276

    Article  PubMed Central  PubMed  Google Scholar 

  59. De Felice FG, Wu D, Lambert MP, Fernandez SJ, Velasco PT, Lacor PN et al (2008) Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by Aβ oligomers. Neurobiol Aging 29:1334–1347

    Article  PubMed Central  PubMed  Google Scholar 

  60. De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST et al (2007) Aβ oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 282:11590–11601

    Article  PubMed  Google Scholar 

  61. Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C (2010) Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 31:224–243

    Article  CAS  PubMed  Google Scholar 

  62. Klein WL, Krafft GA, Zhao W-Q (2011) Compositions and methods for the enhancement of soluble amyloid beta oligomer (ADDL) uptake and clearance. Google Patents

  63. Craft S (2006) Insulin resistance syndrome and Alzheimer disease: pathophysiologic mechanisms and therapeutic implications. Alzheimer Dis Assoc Disord 20:298–301

    Article  CAS  PubMed  Google Scholar 

  64. de la Monte SM, Longato L, Tong M, Wands JR (2009) Insulin resistance and neurodegeneration: roles of obesity, type 2 diabetes mellitus and non-alcoholic steatohepatitis. Curr Opin Investig Drugs 10:1049–1060

    PubMed  Google Scholar 

  65. de la Monte SM, Tong M (2009) Mechanisms of nitrosamine-mediated neurodegeneration: potential relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 17:817–825

    PubMed Central  PubMed  Google Scholar 

  66. Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM (2006) Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 9:13–33

    CAS  PubMed  Google Scholar 

  67. Duelli R, Schröck H, Kuschinsky W, Hoyer S (1994) Intracerebroventricular injection of streptozotocin induces discrete local changes in cerebral glucose utilization in rats. Int J Dev Neurosci 12:737–743

    Article  CAS  PubMed  Google Scholar 

  68. de la Monte SM, Tong M, Lester-Coll N, Plater J, Michael Wands JR (2006) Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer’s disease. J Alzheimers Dis 10:89–109

    PubMed  Google Scholar 

  69. Tong M, Longato L, de la Monte SM (2010) Early limited nitrosamine exposures exacerbate high fat diet-mediated type 2 diabetes and neurodegeneration. BMC Endocr Disord 10:4

    Article  PubMed Central  PubMed  Google Scholar 

  70. Ho L, Qin W, Pompl PN, Xiang Z, Wang J, Zhao Z et al (2004) Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J 18:902–904

    CAS  PubMed  Google Scholar 

  71. Gallagher J, Minogue A, Lynch M (2012) Impaired performance of female APP/PS1 mice in the Morris water maze is coupled with increased Aβ accumulation and microglial activation. Neurodegener Dis 11:33–41

    Article  CAS  PubMed  Google Scholar 

  72. Watson G, Bernhardt T, Reger MA, Cholerton BA, Baker LD, Peskind ER et al (2006) Insulin effects on CSF norepinephrine and cognition in Alzheimer’s disease. Neurobiol Aging 27:38–41

    Article  CAS  PubMed  Google Scholar 

  73. Reger M, Watson G, Green P, Wilkinson C, Baker L, Cholerton B et al (2008) Intranasal insulin improves cognition and modulates β-amyloid in early AD. Neurology 70:440–448

    Article  CAS  PubMed  Google Scholar 

  74. Li Y, Duffy KB, Ottinger MA, Ray B, Bailey JA, Holloway HW et al (2010) GLP-1 receptor stimulation reduces amyloid-β peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer’s disease. J Alzheimers Dis 19:1205–1219

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saadia Zahid.

Ethics declarations

Conflict of interest

The authors have no conflict of interest pertaining to this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S., Mahmood, Z. & Zahid, S. Linking insulin with Alzheimer’s disease: emergence as type III diabetes. Neurol Sci 36, 1763–1769 (2015). https://doi.org/10.1007/s10072-015-2352-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-015-2352-5

Keywords

Navigation