Advertisement

Neurological Sciences

, Volume 36, Issue 10, pp 1763–1769 | Cite as

Linking insulin with Alzheimer’s disease: emergence as type III diabetes

  • Sara Ahmed
  • Zahra Mahmood
  • Saadia ZahidEmail author
Review Article

Abstract

Alzheimer’s disease (AD) has characteristic neuropathological abnormalities including regionalized neurodegeneration, neurofibrillary tangles, amyloid beta (Aβ) deposition, activation of pro-apoptotic genes, and oxidative stress. As the brain functions continue to disintegrate, there is a decline in person’s cognitive abilities, memory, mood, spontaneity, and socializing behavior. A framework that sequentially interlinks all these phenomenons under one event is lacking. Accumulating evidence has indicated the role of insulin deficiency and insulin resistance as mediators of AD neurodegeneration. Herein, we reviewed the evidence stemming from the development of diabetes agent-induced AD animal model. Striking evidence has attributed loss of insulin receptor-bearing neurons to precede or accompany initial stage of AD. This state seems to progress with AD such that, in the terminal stages, it worsens and becomes global. Oxidative stress, tau hyperphosphorylation, APP-Aβ deposition, and impaired glucose and energy metabolism have all been linked to perturbation in insulin/IGF signaling. We conclude that AD could be referred to as “type 3 diabetes”. Moreover, owing to common pathophysiology with diabetes common therapeutic regime could be effective for AD patients.

Keywords

Alzheimer’s disease Type 3 diabetes Insulin signaling Tau hyperphosphorylation Acetylcholine Anti-diabetics 

Notes

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest pertaining to this review.

References

  1. 1.
    Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766PubMedGoogle Scholar
  2. 2.
    Ashe KH, Zahs KR (2010) Probing the biology of Alzheimer’s disease in mice. Neuron 66:631–645PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 29:353–356CrossRefGoogle Scholar
  4. 4.
    Gil-Bea FJ, Solas M, Solomon A, Mugueta C, Winblad B, Kivipelto M et al (2010) Insulin levels are decreased in the cerebrospinal fluid of women with prodomal Alzheimers disease. J Alzheimers Dis 22:405–413PubMedGoogle Scholar
  5. 5.
    Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23:134–147CrossRefPubMedGoogle Scholar
  6. 6.
    Craft S, Cholerton B, Baker LD (2013) Insulin and Alzheimer’s disease: untangling the web. J Alzheimers Dis 33:S263–S275PubMedGoogle Scholar
  7. 7.
    Zhu X, Perry G, Smith MA (2005) Insulin signaling, diabetes mellitus and risk of Alzheimer disease. J Alzheimers Dis 7:81–84PubMedGoogle Scholar
  8. 8.
    de la Monte SM, Wands JR (2005) Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis 7:45–61PubMedGoogle Scholar
  9. 9.
    Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R et al (2005) Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease-is this type 3 diabetes? J Alzheimers Dis 7:63–80PubMedGoogle Scholar
  10. 10.
    Craft S (2012) Alzheimer disease: insulin resistance and AD—extending the translational path. Nat Rev Neurol 8:360–362CrossRefPubMedGoogle Scholar
  11. 11.
    Iwangoff P, Armbruster R, Enz A, Meier-Ruge W (1980) Glycolytic enzymes from human autoptic brain cortex: normal aged and demented cases. Mech Ageing Dev 14:203–209CrossRefPubMedGoogle Scholar
  12. 12.
    Schiöth HB, Craft S, Brooks SJ, Frey WH II, Benedict C (2012) Brain insulin signaling and Alzheimer’s disease: current evidence and future directions. Mol Neurobiol 46:4–10PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Havel PJ (2004) Update on adipocyte hormones regulation of energy balance and carbohydrate/lipid metabolism. Diabetes 53:S143–S151CrossRefPubMedGoogle Scholar
  14. 14.
    Schwartz MW, Figlewicz DP, Baskin DG, Woods SC, Porte D Jr (1992) Insulin in the brain: a hormonal regulator of energy balance. Endocr Rev 13:387–414PubMedGoogle Scholar
  15. 15.
    Havrankova J, Roth J, Brownstein M (1978) Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272:827–829CrossRefPubMedGoogle Scholar
  16. 16.
    Margolis RU, Altszuler N (1967) Insulin in the cerebrospinal fluid. Nature 215:1375–1376CrossRefPubMedGoogle Scholar
  17. 17.
    Boura-Halfon S, Zick Y (2009) Phosphorylation of IRS proteins, insulin action, and insulin resistance. Am J Physiol Endocrinol Metab 296:E581–E591CrossRefPubMedGoogle Scholar
  18. 18.
    Zhao W-Q, Alkon DL (2001) Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 177:125–134CrossRefPubMedGoogle Scholar
  19. 19.
    Kern W, Peters A, Fruehwald-Schultes B, Deininger E, Born J, Fehm HL (2001) Improving influence of insulin on cognitive functions in humans. Neuroendocrinology 74:270–280CrossRefPubMedGoogle Scholar
  20. 20.
    Nelson TJ, Sun M-K, Hongpaisan J, Alkon DL (2008) Insulin, PKC signaling pathways and synaptic remodeling during memory storage and neuronal repair. Eur J Pharmacol 585:76–87CrossRefPubMedGoogle Scholar
  21. 21.
    Benedict C, Hallschmid M, Schmitz K, Schultes B, Ratter F, Fehm HL et al (2006) Intranasal insulin improves memory in humans: superiority of insulin aspart. Neuropsychopharmacology 32:239–243CrossRefPubMedGoogle Scholar
  22. 22.
    Prolla TA, Mattson MP (2001) Molecular mechanisms of brain aging and neurodegenerative disorders: lessons from dietary restriction. Trends Neurosci 24:21–31CrossRefGoogle Scholar
  23. 23.
    Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D et al (2004) Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci USA 101:3100–3105PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Watson G, Craft S (2004) Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer’s disease. Eur J Pharmacol 490:97–113CrossRefPubMedGoogle Scholar
  25. 25.
    Frölich L, Blum-Degen D, Bernstein H-G, Engelsberger S, Humrich J, Laufer S et al (1998) Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm 105:423–438CrossRefPubMedGoogle Scholar
  26. 26.
    Suzanne M, Wands JR (2008) Alzheimer’s disease is type 3 diabetes—evidence reviewed. J Diabetes Sci Technol 2:1101–1113CrossRefGoogle Scholar
  27. 27.
    Hoyer S (2004) Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 490:115–125CrossRefPubMedGoogle Scholar
  28. 28.
    Cole GM, Frautschy SA (2007) The role of insulin and neurotrophic factor signaling in brain aging and Alzheimer’s Disease. Exp Gerontol 42:10–21CrossRefPubMedGoogle Scholar
  29. 29.
    Liu X, Erikson C, Brun A (1996) Cortical synaptic changes and gliosis in normal aging, Alzheimer’s disease and frontal lobe degeneration. Dementia 7:128–134PubMedGoogle Scholar
  30. 30.
    Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong C-X (2004) O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci USA 101:10804–10809PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Watson GS, Craft S (2003) The role of insulin resistance in the pathogenesis of Alzheimer’s disease. CNS Drugs 17:27–45CrossRefPubMedGoogle Scholar
  32. 32.
    Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC (2004) Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53:474–481CrossRefPubMedGoogle Scholar
  33. 33.
    Tabet N (2006) Acetylcholinesterase inhibitors for Alzheimer’s disease: anti-inflammatories in acetylcholine clothing! Age Ageing 35:336–338CrossRefPubMedGoogle Scholar
  34. 34.
    Akter K, Lanza EA, Martin SA, Myronyuk N, Rua M, Raffa RB (2011) Diabetes mellitus and Alzheimer’s disease: shared pathology and treatment? Br J Clin Pharmacol 71:365–376PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    De la Monte S, Chen G, Rivera E, Wands J (2003) Neuronal thread protein regulation and interaction with microtubule-associated proteins in SH-Sy5y neuronal cells. Cell Mol Life Sci 60:2679–2691CrossRefPubMedGoogle Scholar
  36. 36.
    Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A et al (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122:1316–1338PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM (2005) Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimers Dis 8:247–268PubMedGoogle Scholar
  38. 38.
    Alagiakrishnan K, Sankaralingam S, Ghosh M, Mereu L, Senior P (2013) Antidiabetic drugs and their potential role in treating mild cognitive impairment and Alzheimer’s disease. Discov Med 16:277–286PubMedGoogle Scholar
  39. 39.
    Correia SC, Santos RX, Perry G, Zhu X, Moreira PI, Smith MA (2011) Insulin-resistant brain state: the culprit in sporadic Alzheimer’s disease? Ageing Res Rev 10:264–273PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Li L, Hölscher C (2007) Common pathological processes in Alzheimer disease and type 2 diabetes: a review. Brain Res Rev 56:384–402CrossRefPubMedGoogle Scholar
  41. 41.
    Valente T, Gella A, Fernàndez-Busquets X, Unzeta M, Durany N (2010) Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer’s disease and diabetes mellitus. Neurobiol Dis 37:67–76CrossRefPubMedGoogle Scholar
  42. 42.
    Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K et al (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336CrossRefPubMedGoogle Scholar
  43. 43.
    Zhao W-Q, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ et al (2008) Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J 22:246–260CrossRefPubMedGoogle Scholar
  44. 44.
    Ma Q-L, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ et al (2009) β-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 29:9078–9089PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel J-C, Decker H et al (2012) An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease–associated Aβ oligomers. J Clin Invest 122:1339–1353PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Lourenco MV, Clarke JR, Frozza RL, Bomfim TR, Forny-Germano L, Batista AF et al (2013) TNF-α mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer’s β-amyloid oligomers in mice and monkeys. Cell Metab 18:831–843CrossRefPubMedGoogle Scholar
  47. 47.
    De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP et al (2009) Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Aβ oligomers. Proc Natl Acad Sci 106:1971–1976PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Walsh DM, Selkoe DJ (2007) Aβ oligomers—a decade of discovery. J Neurochem 101:1172–1184CrossRefPubMedGoogle Scholar
  49. 49.
    Negash S, Bennett DA, Wilson RS, Schneider JA, Arnold SE (2011) Cognition and neuropathology in aging: multidimensional perspectives from the Rush Religious Orders Study and Rush Memory and Aging Project. Curr Alzheimer Res 8:336PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580CrossRefPubMedGoogle Scholar
  51. 51.
    Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M et al (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Bjorklund NL, Reese LC, Sadagoparamanujam V, Ghirardi V, Woltjer RL, Taglialatela G (2012) Absence of amyloid beta oligomers at the postsynapse and regulated synaptic Zn2+ in cognitively intact aged individuals with Alzheimer’s disease neuropathology. Mol Neurodegener 7:23PubMedCentralCrossRefPubMedGoogle Scholar
  53. 53.
    Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE et al (2003) Alzheimer’s disease-affected brain: presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci 100:10417–10422PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Fukumoto H, Tokuda T, Kasai T, Ishigami N, Hidaka H, Kondo M et al (2010) High-molecular-weight beta-amyloid oligomers are elevated in cerebrospinal fluid of Alzheimer patients. FASEB J 24:2716–2726CrossRefPubMedGoogle Scholar
  55. 55.
    Ferreira ST, Vieira MN, De Felice FG (2007) Soluble protein oligomers as emerging toxins in Alzheimer’s and other amyloid diseases. IUBMB Life 59:332–345CrossRefPubMedGoogle Scholar
  56. 56.
    Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8:101–112CrossRefPubMedGoogle Scholar
  57. 57.
    Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M et al (2007) Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27:796–807CrossRefPubMedGoogle Scholar
  58. 58.
    Jurgensen S, Antonio LL, Mussi GE, Brito-Moreira J, Bomfim TR, De Felice FG et al (2011) Activation of D1/D5 dopamine receptors protects neurons from synapse dysfunction induced by amyloid-beta oligomers. J Biol Chem 286:3270–3276PubMedCentralCrossRefPubMedGoogle Scholar
  59. 59.
    De Felice FG, Wu D, Lambert MP, Fernandez SJ, Velasco PT, Lacor PN et al (2008) Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by Aβ oligomers. Neurobiol Aging 29:1334–1347PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST et al (2007) Aβ oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 282:11590–11601CrossRefPubMedGoogle Scholar
  61. 61.
    Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C (2010) Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging 31:224–243CrossRefPubMedGoogle Scholar
  62. 62.
    Klein WL, Krafft GA, Zhao W-Q (2011) Compositions and methods for the enhancement of soluble amyloid beta oligomer (ADDL) uptake and clearance. Google PatentsGoogle Scholar
  63. 63.
    Craft S (2006) Insulin resistance syndrome and Alzheimer disease: pathophysiologic mechanisms and therapeutic implications. Alzheimer Dis Assoc Disord 20:298–301CrossRefPubMedGoogle Scholar
  64. 64.
    de la Monte SM, Longato L, Tong M, Wands JR (2009) Insulin resistance and neurodegeneration: roles of obesity, type 2 diabetes mellitus and non-alcoholic steatohepatitis. Curr Opin Investig Drugs 10:1049–1060PubMedGoogle Scholar
  65. 65.
    de la Monte SM, Tong M (2009) Mechanisms of nitrosamine-mediated neurodegeneration: potential relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 17:817–825PubMedCentralPubMedGoogle Scholar
  66. 66.
    Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM (2006) Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 9:13–33PubMedGoogle Scholar
  67. 67.
    Duelli R, Schröck H, Kuschinsky W, Hoyer S (1994) Intracerebroventricular injection of streptozotocin induces discrete local changes in cerebral glucose utilization in rats. Int J Dev Neurosci 12:737–743CrossRefPubMedGoogle Scholar
  68. 68.
    de la Monte SM, Tong M, Lester-Coll N, Plater J, Michael Wands JR (2006) Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer’s disease. J Alzheimers Dis 10:89–109PubMedGoogle Scholar
  69. 69.
    Tong M, Longato L, de la Monte SM (2010) Early limited nitrosamine exposures exacerbate high fat diet-mediated type 2 diabetes and neurodegeneration. BMC Endocr Disord 10:4PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Ho L, Qin W, Pompl PN, Xiang Z, Wang J, Zhao Z et al (2004) Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J 18:902–904PubMedGoogle Scholar
  71. 71.
    Gallagher J, Minogue A, Lynch M (2012) Impaired performance of female APP/PS1 mice in the Morris water maze is coupled with increased Aβ accumulation and microglial activation. Neurodegener Dis 11:33–41CrossRefPubMedGoogle Scholar
  72. 72.
    Watson G, Bernhardt T, Reger MA, Cholerton BA, Baker LD, Peskind ER et al (2006) Insulin effects on CSF norepinephrine and cognition in Alzheimer’s disease. Neurobiol Aging 27:38–41CrossRefPubMedGoogle Scholar
  73. 73.
    Reger M, Watson G, Green P, Wilkinson C, Baker L, Cholerton B et al (2008) Intranasal insulin improves cognition and modulates β-amyloid in early AD. Neurology 70:440–448CrossRefPubMedGoogle Scholar
  74. 74.
    Li Y, Duffy KB, Ottinger MA, Ray B, Bailey JA, Holloway HW et al (2010) GLP-1 receptor stimulation reduces amyloid-β peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer’s disease. J Alzheimers Dis 19:1205–1219PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2015

Authors and Affiliations

  1. 1.Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied BiosciencesNational University of Sciences and TechnologyIslamabadPakistan

Personalised recommendations