Advertisement

Neurological Sciences

, Volume 36, Issue 10, pp 1881–1888 | Cite as

TREM2 variants and risk of Alzheimer’s disease: a meta-analysis

  • Yanjun Lu
  • Wei Liu
  • Xiong WangEmail author
Original Article

Abstract

Recent studies show that heterozygous variant of triggering receptor expressed on myeloid cells 2 (TREM2) increase the risk of Alzheimer’s disease (AD) but with inconclusive results. Here, we conducted a meta-analysis to summarize and clarify the association between TREM2 variants and AD, and examined the relationship between TREM2 genetic variant and the etiology of AD. Relevant case–control studies were retrieved and collected according to established inclusion criteria. Odds ratio (OR) and 95 % confidence interval (95 % CI) were used to estimate the associations between three TREM2 variants (rs75932628, rs104894002, and rs143332484) and AD. In overall meta-analysis, the summary ORs for rs75932628, rs104894002, and rs143332484 were 2.70 [95 % CI: 2.24, 3.24; P < 0.001], 7.21 (95 % CI: 1.28, 40.78; P = 0.025), and 1.65 (95 % CI: 1.24, 2.21; P = 0.001), respectively, indicating that the TREM2 rs75932628, rs104894002, and rs143332484 may contribute to AD risk. However, sensitivity analysis showed that the results of rs104894002 and rs143332484 should be interpreted with caution, and larger sample size, particularly in different ethnicities, are needed to validate the two variants. The current meta-analysis demonstrates that TREM2 is a candidate gene for AD susceptibility, and TREM2 variant rs75932628 may be a risk factor for AD.

Keywords

Alzheimer’s disease Dementia TREM2 Polymorphism Meta-analysis 

Notes

Conflict of interest

None.

References

  1. 1.
    Zhou JN, Liu RY, Kamphorst W, Hofman MA, Swaab DF (2003) Early neuropathological Alzheimer’s changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J Pineal Res 35(2):125–130CrossRefPubMedGoogle Scholar
  2. 2.
    Droogsma E, van Asselt D, Diekhuis M, Veeger N, van der Hooft C, De Deyn PP (2015) Initial cognitive response to cholinesterase inhibitors and subsequent long-term course in patients with mild Alzheimer’s disease. Int Psychogeriatr 17:1–11. doi: 10.1017/S1041610215000289 Google Scholar
  3. 3.
    Peng XL, Hou L, Xu SH, Hua Y, Zhou SJ, Zhang Y, Zheng YP, Fu YH, Xu Q, Zhang LS, Wang J, Guan XT, He JS (2014) Novel APP K724 M mutation causes Chinese early-onset familial Alzheimer’s disease and increases amyloid-beta42 to amyloid-beta40 ratio. Neurobiol Aging 35(11):2657.e1–2657.e6. doi: 10.1016/j.neurobiolaging.2014.06.005 CrossRefGoogle Scholar
  4. 4.
    Veeraraghavalu K, Choi SH, Zhang X, Sisodia SS (2013) Endogenous expression of FAD-linked PS1 impairs proliferation, neuronal differentiation and survival of adult hippocampal progenitors. Mol Neurodegener 8:41. doi: 10.1186/1750-1326-8-41 PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Ryman DC, Acosta-Baena N, Aisen PS, Bird T, Danek A, Fox NC, Goate A, Frommelt P, Ghetti B, Langbaum JB, Lopera F, Martins R, Masters CL, Mayeux RP, McDade E, Moreno S, Reiman EM, Ringman JM, Salloway S, Schofield PR, Sperling R, Tariot PN, Xiong C, Morris JC, Bateman RJ, Dominantly Inherited Alzheimer N (2014) Symptom onset in autosomal dominant Alzheimer disease: a systematic review and meta-analysis. Neurology 83(3):253–260. doi: 10.1212/WNL.0000000000000596 PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Liao YC, Lee WJ, Hwang JP, Wang YF, Tsai CF, Wang PN, Wang SJ, Fuh JL (2014) ABCA7 gene and the risk of Alzheimer’s disease in Han Chinese in Taiwan. Neurobiol Aging 35(10):2423.e7–2423.e13. doi: 10.1016/j.neurobiolaging.2014.05.009 CrossRefGoogle Scholar
  7. 7.
    Jiang T, Yu JT, Tan MS, Wang HF, Wang YL, Zhu XC, Zhang W, Tan L (2014) Genetic variation in PICALM and Alzheimer’s disease risk in Han Chinese. Neurobiol Aging 35(4):934.e1–934.e3. doi: 10.1016/j.neurobiolaging.2013.09.014 CrossRefGoogle Scholar
  8. 8.
    Chung SJ, Kim MJ, Kim YJ, Kim J, You S, Jang EH, Kim SY, Lee JH (2014) CR1, ABCA7, and APOE genes affect the features of cognitive impairment in Alzheimer’s disease. J Neurol Sci 339(1–2):91–96. doi: 10.1016/j.jns.2014.01.029 CrossRefPubMedGoogle Scholar
  9. 9.
    Schmidt C, Wolff M, von Ahsen N, Lange K, Friede T, Zerr I (2014) CR1 is potentially associated with rate of decline in sporadic Alzheimer’s disease. J Clin Neurosci 21(10):1705–1708. doi: 10.1016/j.jocn.2014.03.015 CrossRefPubMedGoogle Scholar
  10. 10.
    Jun G, Ibrahim-Verbaas CA, Vronskaya M, Lambert JC, Chung J, Naj AC, Kunkle BW, Wang LS, Bis JC, Bellenguez C, Harold D, Lunetta KL, Destefano AL, Grenier-Boley B, Sims R, Beecham GW, Smith AV, Chouraki V, Hamilton-Nelson KL, Ikram MA, Fievet N, Denning N, Martin ER, Schmidt H, Kamatani Y, Dunstan ML, Valladares O, Laza AR, Zelenika D, Ramirez A, Foroud TM, Choi SH, Boland A, Becker T, Kukull WA, van der Lee SJ, Pasquier F, Cruchaga C, Beekly D, Fitzpatrick AL, Hanon O, Gill M, Barber R, Gudnason V, Campion D, Love S, Bennett DA, Amin N, Berr C, Tsolaki M, Buxbaum JD, Lopez OL, Deramecourt V, Fox NC, Cantwell LB, Tarraga L, Dufouil C, Hardy J, Crane PK, Eiriksdottir G, Hannequin D, Clarke R, Evans D, Mosley TH, Jr., Letenneur L, Brayne C, Maier W, De Jager P, Emilsson V, Dartigues JF, Hampel H, Kamboh MI, de Bruijn RF, Tzourio C, Pastor P, Larson EB, Rotter JI, O’Donovan MC, Montine TJ, Nalls MA, Mead S, Reiman EM, Jonsson PV, Holmes C, St George-Hyslop PH, Boada M, Passmore P, Wendland JR, Schmidt R, Morgan K, Winslow AR, Powell JF, Carasquillo M, Younkin SG, Jakobsdottir J, Kauwe JS, Wilhelmsen KC, Rujescu D, Nothen MM, Hofman A, Jones L, Consortium I, Haines JL, Psaty BM, Van Broeckhoven C, Holmans P, Launer LJ, Mayeux R, Lathrop M, Goate AM, Escott-Price V, Seshadri S, Pericak-Vance MA, Amouyel P, Williams J, van Duijn CM, Schellenberg GD, Farrer LA (2015) A novel Alzheimer disease locus located near the gene encoding tau protein. Mol Psychiatry. doi:10.1038/mp.2015.23Google Scholar
  11. 11.
    Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Younkin S, Hazrati L, Collinge J, Pocock J, Lashley T, Williams J, Lambert JC, Amouyel P, Goate A, Rademakers R, Morgan K, Powell J, St George-Hyslop P, Singleton A, Hardy J, Alzheimer Genetic Analysis G (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368(2):117–127. doi: 10.1056/NEJMoa1211851 PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Cuyvers E, Bettens K, Philtjens S, Van Langenhove T, Gijselinck I, van der Zee J, Engelborghs S, Vandenbulcke M, Van Dongen J, Geerts N, Maes G, Mattheijssens M, Peeters K, Cras P, Vandenberghe R, De Deyn PP, Van Broeckhoven C, Cruts M, Sleegers K, consortium B (2014) Investigating the role of rare heterozygous TREM2 variants in Alzheimer’s disease and frontotemporal dementia. Neurobiol Aging 35(3):e711–e729. doi: 10.1016/j.neurobiolaging.2013.09.009 CrossRefGoogle Scholar
  13. 13.
    Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC, Beecham GW, Grenier-Boley B, Russo G, Thorton-Wells TA, Jones N, Smith AV, Chouraki V, Thomas C, Ikram MA, Zelenika D, Vardarajan BN, Kamatani Y, Lin CF, Gerrish A, Schmidt H, Kunkle B, Dunstan ML, Ruiz A, Bihoreau MT, Choi SH, Reitz C, Pasquier F, Cruchaga C, Craig D, Amin N, Berr C, Lopez OL, De Jager PL, Deramecourt V, Johnston JA, Evans D, Lovestone S, Letenneur L, Moron FJ, Rubinsztein DC, Eiriksdottir G, Sleegers K, Goate AM, Fievet N, Huentelman MW, Gill M, Brown K, Kamboh MI, Keller L, Barberger-Gateau P, McGuiness B, Larson EB, Green R, Myers AJ, Dufouil C, Todd S, Wallon D, Love S, Rogaeva E, Gallacher J, St George-Hyslop P, Clarimon J, Lleo A, Bayer A, Tsuang DW, Yu L, Tsolaki M, Bossu P, Spalletta G, Proitsi P, Collinge J, Sorbi S, Sanchez-Garcia F, Fox NC, Hardy J, Deniz Naranjo MC, Bosco P, Clarke R, Brayne C, Galimberti D, Mancuso M, Matthews F, European Alzheimer’s Disease, Genetic Environmental Risk in Alzheimer’s D, Alzheimer’s Disease Genetic C, Cohorts for H, Aging Research in Genomic E, Moebus S, Mecocci P, Del Zompo M, Maier W, Hampel H, Pilotto A, Bullido M, Panza F, Caffarra P, Nacmias B, Gilbert JR, Mayhaus M, Lannefelt L, Hakonarson H, Pichler S, Carrasquillo MM, Ingelsson M, Beekly D, Alvarez V, Zou F, Valladares O, Younkin SG, Coto E, Hamilton-Nelson KL, Gu W, Razquin C, Pastor P, Mateo I, Owen MJ, Faber KM, Jonsson PV, Combarros O, O’Donovan MC, Cantwell LB, Soininen H, Blacker D, Mead S, Mosley TH Jr, Bennett DA, Harris TB, Fratiglioni L, Holmes C, de Bruijn RF, Passmore P, Montine TJ, Bettens K, Rotter JI, Brice A, Morgan K, Foroud TM, Kukull WA, Hannequin D, Powell JF, Nalls MA, Ritchie K, Lunetta KL, Kauwe JS, Boerwinkle E, Riemenschneider M, Boada M, Hiltuenen M, Martin ER, Schmidt R, Rujescu D, Wang LS, Dartigues JF, Mayeux R, Tzourio C, Hofman A, Nothen MM, Graff C, Psaty BM, Jones L, Haines JL, Holmans PA, Lathrop M, Pericak-Vance MA, Launer LJ, Farrer LA, van Duijn CM, Van Broeckhoven C, Moskvina V, Seshadri S, Williams J, Schellenberg GD, Amouyel P (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nature genetics 45(12):1452–1458. doi: 10.1038/ng.2802 PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Chen JA, Wang Q, Davis-Turak J, Li Y, Karydas AM, Hsu SC, Sears RL, Chatzopoulou D, Huang AY, Wojta KJ, Klein E, Lee J, Beekly DL, Boxer A, Faber KM, Haase CM, Miller J, Poon WW, Rosen A, Rosen H, Sapozhnikova A, Shapira J, Varpetian A, Foroud TM, Levenson RW, Levey AI, Kukull WA, Mendez MF, Ringman J, Chui H, Cotman C, DeCarli C, Miller BL, Geschwind DH, Coppola G (2015) A multiancestral genome-wide exome array study of Alzheimer disease, frontotemporal dementia, and progressive supranuclear palsy. JAMA Neurol. doi: 10.1001/jamaneurol.2014.4040 Google Scholar
  15. 15.
    Jiang T, Yu JT, Zhu XC, Tan L (2013) TREM2 in Alzheimer’s disease. Mol Neurobiol 48(1):180–185. doi: 10.1007/s12035-013-8424-8 CrossRefPubMedGoogle Scholar
  16. 16.
    Boutajangout A, Wisniewski T (2013) The innate immune system in Alzheimer’s disease. Int J Cell Biol 2013:576383. doi: 10.1155/2013/576383 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML, Gilfillan S, Krishnan GM, Sudhakar S, Zinselmeyer BH, Holtzman DM, Cirrito JR, Colonna M (2015) TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160(6):1061–1071. doi: 10.1016/j.cell.2015.01.049 CrossRefPubMedGoogle Scholar
  18. 18.
    Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, Rujescu D, Hampel H, Giegling I, Andreassen OA, Engedal K, Ulstein I, Djurovic S, Ibrahim-Verbaas C, Hofman A, Ikram MA, van Duijn CM, Thorsteinsdottir U, Kong A, Stefansson K (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368(2):107–116. doi: 10.1056/NEJMoa1211103 PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Miyashita A, Wen Y, Kitamura N, Matsubara E, Kawarabayashi T, Shoji M, Tomita N, Furukawa K, Arai H, Asada T, Harigaya Y, Ikeda M, Amari M, Hanyu H, Higuchi S, Nishizawa M, Suga M, Kawase Y, Akatsu H, Imagawa M, Hamaguchi T, Yamada M, Morihara T, Takeda M, Takao T, Nakata K, Sasaki K, Watanabe K, Nakashima K, Urakami K, Ooya T, Takahashi M, Yuzuriha T, Serikawa K, Yoshimoto S, Nakagawa R, Saito Y, Hatsuta H, Murayama S, Kakita A, Takahashi H, Yamaguchi H, Akazawa K, Kanazawa I, Ihara Y, Ikeuchi T, Kuwano R (2014) Lack of genetic association between TREM2 and late-onset Alzheimer’s disease in a Japanese population. J Alzheimers Dis 41(4):1031–1038. doi: 10.3233/JAD-140225 PubMedGoogle Scholar
  20. 20.
    Hooli BV, Parrado AR, Mullin K, Yip WK, Liu T, Roehr JT, Qiao D, Jessen F, Peters O, Becker T, Ramirez A, Lange C, Bertram L, Tanzi RE (2014) The rare TREM2 R47H variant exerts only a modest effect on Alzheimer disease risk. Neurology 83(15):1353–1358. doi: 10.1212/WNL.0000000000000855 CrossRefPubMedGoogle Scholar
  21. 21.
    Gonzalez Murcia JD, Schmutz C, Munger C, Perkes A, Gustin A, Peterson M, Ebbert MT, Norton MC, Tschanz JT, Munger RG, Corcoran CD, Kauwe JS (2013) Assessment of TREM2 rs75932628 association with Alzheimer’s disease in a population-based sample: the Cache County Study. Neurobiol Aging 34(12):e2811–e2833. doi: 10.1016/j.neurobiolaging.2013.06.004 CrossRefGoogle Scholar
  22. 22.
    Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8(5):336–341. doi: 10.1016/j.ijsu.2010.02.007 CrossRefPubMedGoogle Scholar
  23. 23.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188CrossRefPubMedGoogle Scholar
  24. 24.
    Li K, Tie H, Hu N, Chen H, Yin X, Peng C, Wan J, Huang W (2014) Association of two polymorphisms rs2910164 in miRNA-146a and rs3746444 in miRNA-499 with rheumatoid arthritis: a meta-analysis. Hum Immunol 75(7):602–608. doi: 10.1016/j.humimm.2014.05.002 CrossRefPubMedGoogle Scholar
  25. 25.
    Wang Z, Hong Y, Zou L, Zhong R, Zhu B, Shen N, Chen W, Lou J, Ke J, Zhang T, Wang W, Miao X (2014) Reelin gene variants and risk of autism spectrum disorders: an integrated meta-analysis. Am J Med Genet B Neuropsychiatr Genet 165B(2):192–200. doi: 10.1002/ajmg.b.32222 CrossRefPubMedGoogle Scholar
  26. 26.
    Shuai P, Liu Y, Lu W, Liu Q, Li T, Gong B (2015) Genetic associations of CLU rs9331888 polymorphism with Alzheimer’s disease: a meta-analysis. Neurosci Lett 591:160–165. doi: 10.1016/j.neulet.2015.02.040 CrossRefPubMedGoogle Scholar
  27. 27.
    Slattery CF, Beck JA, Harper L, Adamson G, Abdi Z, Uphill J, Campbell T, Druyeh R, Mahoney CJ, Rohrer JD, Kenny J, Lowe J, Leung KK, Barnes J, Clegg SL, Blair M, Nicholas JM, Guerreiro RJ, Rowe JB, Ponto C, Zerr I, Kretzschmar H, Gambetti P, Crutch SJ, Warren JD, Rossor MN, Fox NC, Collinge J, Schott JM, Mead S (2014) R47H TREM2 variant increases risk of typical early-onset Alzheimer’s disease but not of prion or frontotemporal dementia. Alzheimers Dement J Alzheimers Assoc. doi: 10.1016/j.jalz.2014.05.1751 Google Scholar
  28. 28.
    Jin SC, Benitez BA, Karch CM, Cooper B, Skorupa T, Carrell D, Norton JB, Hsu S, Harari O, Cai Y, Bertelsen S, Goate AM, Cruchaga C (2014) Coding variants in TREM2 increase risk for Alzheimer’s disease. Hum Mol Genet. doi: 10.1093/hmg/ddu277 Google Scholar
  29. 29.
    Ruiz A, Dols-Icardo O, Bullido MJ, Pastor P, Rodriguez-Rodriguez E, de Lopez Munain A, de Pancorbo MM, Perez-Tur J, Alvarez V, Antonell A, Lopez-Arrieta J, Hernandez I, Tarraga L, Boada M, Lleo A, Blesa R, Frank-Garcia A, Sastre I, Razquin C, Ortega-Cubero S, Lorenzo E, Sanchez-Juan P, Combarros O, Moreno F, Gorostidi A, Elcoroaristizabal X, Baquero M, Coto E, Sanchez-Valle R, Clarimon J, dementia genetic Spanish c (2014) Assessing the role of the TREM2 p.R47H variant as a risk factor for Alzheimer’s disease and frontotemporal dementia. Neurobiology of aging 35(2):444.e1–444.e4. doi: 10.1016/j.neurobiolaging.2013.08.011 CrossRefGoogle Scholar
  30. 30.
    Giraldo M, Lopera F, Siniard AL, Corneveaux JJ, Schrauwen I, Carvajal J, Munoz C, Ramirez-Restrepo M, Gaiteri C, Myers AJ, Caselli RJ, Kosik KS, Reiman EM, Huentelman MJ (2013) Variants in triggering receptor expressed on myeloid cells 2 are associated with both behavioral variant frontotemporal lobar degeneration and Alzheimer’s disease. Neurobiology of aging 34(8):2077.e11–2077.e18. doi: 10.1016/j.neurobiolaging.2013.02.016 CrossRefGoogle Scholar
  31. 31.
    Benitez BA, Cooper B, Pastor P, Jin SC, Lorenzo E, Cervantes S, Cruchaga C (2013) TREM2 is associated with the risk of Alzheimer’s disease in Spanish population. Neurobiology of aging 34 (6):1711 e1715-1717. doi: 10.1016/j.neurobiolaging.2012.12.018
  32. 32.
    Pottier C, Wallon D, Rousseau S, Rovelet-Lecrux A, Richard AC, Rollin-Sillaire A, Frebourg T, Campion D, Hannequin D (2013) TREM2 R47H variant as a risk factor for early-onset Alzheimer’s disease. Journal of Alzheimer’s disease : JAD 35(1):45–49. doi: 10.3233/JAD-122311 PubMedGoogle Scholar
  33. 33.
    Finelli D, Rollinson S, Harris J, Jones M, Richardson A, Gerhard A, Snowden J, Mann D, Pickering-Brown S (2015) TREM2 analysis and increased risk of Alzheimer’s disease. Neurobiology of aging 36 (1):546 e549-513. doi: 10.1016/j.neurobiolaging.2014.08.001
  34. 34.
    Roussos P, Katsel P, Fam P, Tan W, Purohit DP, Haroutunian V (2014) The triggering receptor expressed on myeloid cells 2 (TREM2) is associated with enhanced inflammation, neuropathological lesions and increased risk for Alzheimer’s dementia. Alzheimer’s Dement J Alzheimer’s Assoc. doi: 10.1016/j.jalz.2014.10.013 Google Scholar
  35. 35.
    Borroni B, Ferrari F, Galimberti D, Nacmias B, Barone C, Bagnoli S, Fenoglio C, Piaceri I, Archetti S, Bonvicini C, Gennarelli M, Turla M, Scarpini E, Sorbi S, Padovani A (2014) Heterozygous TREM2 mutations in frontotemporal dementia. Neurobiology of aging 35 (4):934 e937-910. doi: 10.1016/j.neurobiolaging.2013.09.017
  36. 36.
    Hu N, Tan MS, Yu JT, Sun L, Tan L, Wang YL, Jiang T, Tan L (2014) Increased expression of TREM2 in peripheral blood of Alzheimer’s disease patients. Journal of Alzheimer’s disease : JAD 38(3):497–501. doi: 10.3233/JAD-130854 PubMedGoogle Scholar
  37. 37.
    Frank S, Burbach GJ, Bonin M, Walter M, Streit W, Bechmann I, Deller T (2008) TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice. Glia 56(13):1438–1447. doi: 10.1002/glia.20710 CrossRefPubMedGoogle Scholar
  38. 38.
    Jiang T, Tan L, Zhu XC, Zhang QQ, Cao L, Tan MS, Gu LZ, Wang HF, Ding ZZ, Zhang YD, Yu JT (2014) Upregulation of TREM2 ameliorates neuropathology and rescues spatial cognitive impairment in a transgenic mouse model of Alzheimer’s disease. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 39(13):2949–2962. doi: 10.1038/npp.2014.164 CrossRefGoogle Scholar
  39. 39.
    Cady J, Koval ED, Benitez BA, Zaidman C, Jockel-Balsarotti J, Allred P, Baloh RH, Ravits J, Simpson E, Appel SH, Pestronk A, Goate AM, Miller TM, Cruchaga C, Harms MB (2014) TREM2 variant p. R47H as a risk factor for sporadic amyotrophic lateral sclerosis. JAMA neurology 71(4):449–453. doi: 10.1001/jamaneurol.2013.6237 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2015

Authors and Affiliations

  1. 1.Department of Laboratory Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Public Health, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations