Neurological Sciences

, Volume 36, Issue 8, pp 1311–1317 | Cite as

Stem cell-based therapies for intracerebral hemorrhage in animal model: a meta-analysis

  • Xun Ma
  • Jie Qin
  • Bo Song
  • Changhe Shi
  • Rui Zhang
  • Xinjing Liu
  • Yan Ji
  • Wei Ji
  • Guangming Gong
  • Yuming Xu
Review Article


Stem cell to be a new intervention for treating intracerebral hemorrhage (ICH) might benefit humans. Therefore, we collected animal studies to find the effect of this innovative treatment. In July 2014, we searched Medline (from 1950), Embase (from 1980), China Biology Medicine disk (from 1978) for studies on stem cells used for treating experimental ICH in animal models that reported neurobehavioral and structural outcome. We evaluated the quality of these studies and used a weighted mean difference random affects model for the meta-analysis. We have collected 30 studies from 650 publications identified through systematic review describing the effects of 5 different type of stem cells on 12 different neurobehavioral scales with 1101 rodents or monkeys. Although there is lack of uniformity of the evaluation methods, these researches showed consistent improvements both in neurobehavioral function and structural outcomes. Besides, the quality of these studies needs to be raised. In conclusion, stem cells hold extensive potential in treating ICH, which should be further evaluated with more evidence-based, high-quality animal studies.


Meta-analysis Stem cells Intracerebral hemorrhage 



This work was supported by the Natural Science Foundation of China (Grant no. 81070920 and 81471158 to Y. Xu; Grant no. 81301007 to J.Qin) and performed in Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University.

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

10072_2015_2238_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 24 kb)


  1. 1.
    Krishnamurthi RV, Moran AE, Forouzanfar MH et al (2014) The global burden of hemorrhagic stroke: a summary of findings from the GBD 2010 study. Glob Heart 9(1):101–106PubMedCrossRefGoogle Scholar
  2. 2.
    Gonzalez-Perez A, Gaist D, Wallander MA, McFeat G, Garcia-Rodriguez LA (2013) Mortality after hemorrhagic stroke: data from general practice (The Health Improvement Network). Neurology 81(6):559–565PubMedCrossRefGoogle Scholar
  3. 3.
    Keep RF, Hua Y, Xi G (2012) Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 11(8):720–731PubMedCrossRefGoogle Scholar
  4. 4.
    Participants NIW (2005) Priorities for clinical research in intracerebral hemorrhage: report from a National Institute of Neurological Disorders and Stroke workshop. Stroke 36(3):e23–e41CrossRefGoogle Scholar
  5. 5.
    Qin J, Song B, Zhang H et al (2013) Transplantation of human neuro-epithelial-like stem cells derived from induced pluripotent stem cells improves neurological function in rats with experimental intracerebral hemorrhage. Neurosci Lett 548:95–100PubMedCrossRefGoogle Scholar
  6. 6.
    Vaquero J, Otero L, Bonilla C et al (2013) Cell therapy with bone marrow stromal cells after intracerebral hemorrhage: impact of platelet-rich plasma scaffolds. Cytotherapy 15(1):33–43PubMedCrossRefGoogle Scholar
  7. 7.
    Chen J, Tang YX, Liu YM et al (2012) Transplantation of adipose-derived stem cells is associated with neural differentiation and functional improvement in a rat model of intracerebral hemorrhage. CNS Neurosci Ther 18(10):847–854PubMedCrossRefGoogle Scholar
  8. 8.
    Lee ST, Chu K, Jung KH et al (2008) Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain. 131(Pt 3):616–629PubMedCrossRefGoogle Scholar
  9. 9.
    MacLellan CL, Paquette R, Colbourne F (2012) A critical appraisal of experimental intracerebral hemorrhage research. J Cereb Blood Flow Metab 32(4):612–627PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Macleod MR, O’Collins T, Howells DW, Donnan GA (2004) Pooling of animal experimental data reveals influence of study design and publication bias. Stroke 35(5):1203–1208PubMedCrossRefGoogle Scholar
  11. 11.
    Hamm RJ, Pike BR, O’Dell DM, Lyeth BG, Jenkins LW (1994) The rotarod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injury. J Neurotrauma 11(2):187–196PubMedCrossRefGoogle Scholar
  12. 12.
    Chen J, Li Y, Wang L et al (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32(4):1005–1011PubMedCrossRefGoogle Scholar
  13. 13.
    Hua Y, Schallert T, Keep RF, Wu J, Hoff JT, Xi G (2002) Behavioral tests after intracerebral hemorrhage in the rat. Stroke 33(10):2478–2484PubMedCrossRefGoogle Scholar
  14. 14.
    Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20(1):84–91PubMedCrossRefGoogle Scholar
  15. 15.
    Borlongan CV, Randall TS, Cahill DW, Sanberg PR (1995) Asymmetrical motor behavior in rats with unilateral striatal excitotoxic lesions as revealed by the elevated body swing test. Brain Res 676(1):231–234PubMedCrossRefGoogle Scholar
  16. 16.
    Sakowitz OW, Kiening KL, Krajewski KL et al (2009) Preliminary evidence that ketamine inhibits spreading depolarizations in acute human brain injury. Stroke 40(8):e519–e522PubMedCrossRefGoogle Scholar
  17. 17.
    Hirst JA, Howick J, Aronson JK et al (2014) The need for randomization in animal trials: an overview of systematic reviews. PLoS One 9(6):e98856PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Schnabel LV, Abratte CM, Schimenti JC, et al (2014) Induced pluripotent stem cells have similar immunogenic and more potent immunomodulatory properties compared with bone marrow-derived stromal cells in vitro. Regen Med 9(5):621–635PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Lu Q, Yu M, Shen C et al (2014) Negligible immunogenicity of induced pluripotent stem cells derived from human skin fibroblasts. PLoS One 9(12):e114949PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Imberti B, Monti M, Casiraghi F (2015) Pluripotent stem cells and tolerance induction in organ transplantation. Curr Opin Organ Transplant 20(1):86–93PubMedCrossRefGoogle Scholar
  21. 21.
    Al-Shahi SR, Labovitz DL, Stapf C (2009) Spontaneous intracerebral haemorrhage. BMJ 339:b2586CrossRefGoogle Scholar
  22. 22.
    Krafft PR, Bailey EL, Lekic T et al (2012) Etiology of stroke and choice of models. Int J Stroke 7(5):398–406PubMedCrossRefGoogle Scholar
  23. 23.
    James ML, Warner DS, Laskowitz DT (2008) Preclinical models of intracerebral hemorrhage: a translational perspective. Neurocrit Care 9(1):139–152PubMedCrossRefGoogle Scholar
  24. 24.
    Andaluz N, Zuccarello M, Wagner KR (2002) Experimental animal models of intracerebral hemorrhage. Neurosurg Clin N Am 13(3):385–393PubMedCrossRefGoogle Scholar
  25. 25.
    MacLellan CL, Silasi G, Poon CC et al (2008) Intracerebral hemorrhage models in rat: comparing collagenase to blood infusion. J Cereb Blood Flow Metab 28(3):516–525PubMedCrossRefGoogle Scholar
  26. 26.
    Qureshi AI, Mendelow AD, Hanley DF (2009) Intracerebral haemorrhage. Lancet 373(9675):1632–1644PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2015

Authors and Affiliations

  • Xun Ma
    • 1
    • 3
  • Jie Qin
    • 1
  • Bo Song
    • 1
  • Changhe Shi
    • 1
  • Rui Zhang
    • 1
  • Xinjing Liu
    • 1
  • Yan Ji
    • 1
  • Wei Ji
    • 1
  • Guangming Gong
    • 2
  • Yuming Xu
    • 1
  1. 1.Third Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouPeople’s Republic of China
  2. 2.Department of Microbiology and Immunology, College of Basic Medical SciencesZhengzhou UniversityZhengzhouPeople’s Republic of China
  3. 3.Institute of Clinical MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouPeople’s Republic of China

Personalised recommendations