Neurological Sciences

, Volume 36, Supplement 1, pp 41–45 | Cite as

Resting-state fMRI functional connectivity: a new perspective to evaluate pain modulation in migraine?

  • Bruno ColomboEmail author
  • Maria Assunta Rocca
  • Roberta Messina
  • Simone Guerrieri
  • Massimo Filippi


Resting-state (RS) functional magnetic resonance imaging (fMRI) is a relatively novel tool which explores connectivity between functionally linked, but anatomically separated, brain regions. The use of this technique has allowed the identification, at rest, of the main brain functional networks without requiring subjects to perform specific active tasks. Methodologically, several approaches can be applied for the analysis of RS fMRI, including seed-based, independent component analysis-based and/or cluster-based methods. The most consistently described RS network is the so-called “default mode network”. Using RS fMRI, several studies have identified functional connectivity abnormalities in migraine patients, mainly located at the level of the pain-processing network. RS functional connectivity is generally increased in pain-processing network, whereas is decreased in pain modulatory circuits. Significant abnormalities of RS functional connectivity occur also in affective networks, the default mode network and the executive control network. These results provide a strong characterization of migraine as a brain dysfunction affecting intrinsic connectivity of brain networks, possibly reflecting the impact of long lasting pain on brain function.


Migraine Resting-state functional MRI Pain Functional connectivity 


Conflict of interest

The authors certify that there is no actual or potential conflict of interest in relation to this article.


  1. 1.
    Sporns O, Kötter R (2004) Motifs in brain networks. PLoS Biol 2:1910–1918CrossRefGoogle Scholar
  2. 2.
    Hagmann P, Cammoun L, Gigandet X et al (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Aertsen AM, Gerstein GL, Habib MK et al (1989) Dynamics of neuronal firing correlation: modulation of “effective connectivity”. J Neurophysiol 61:900–917PubMedGoogle Scholar
  4. 4.
    Friston KJ, Frith CD, Liddle PF et al (1993) Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13:5–14CrossRefPubMedGoogle Scholar
  5. 5.
    Biswal B, Yetkin FZ, Haughton VM et al (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541CrossRefPubMedGoogle Scholar
  6. 6.
    Cordes D, Haughton VM, Arfanakis K et al (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. Am J Neuroradiol 22:1326–1333PubMedGoogle Scholar
  7. 7.
    Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694CrossRefPubMedGoogle Scholar
  8. 8.
    Peltier SJ, Noll DC (2002) T2 dependence of low frequency functional connectivity. NeuroImage 16:985–992CrossRefPubMedGoogle Scholar
  9. 9.
    Hampson M, Peterson BS, Skudlarski P et al (2002) Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp 15:247–262CrossRefPubMedGoogle Scholar
  10. 10.
    Hampson M, Olson IR, Leung HC et al (2004) Changes in functional connectivity of human MT/V5 with visual motion input. NeuroReport 15:1315–1319CrossRefPubMedGoogle Scholar
  11. 11.
    Greicius M (2008) Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol 21:424–430CrossRefPubMedGoogle Scholar
  12. 12.
    Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711CrossRefPubMedGoogle Scholar
  13. 13.
    Beckmann CF, DeLuca M, Devlin JT et al (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–1013CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38CrossRefPubMedGoogle Scholar
  15. 15.
    Seeley WW, Menon V, Schatzberg AF et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    De Luca M, Beckmann CF, De Stefano N et al (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29:1359–1367CrossRefPubMedGoogle Scholar
  18. 18.
    Damoiseaux JS, Rombouts SA, Barkhof F et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Smith SM, Fox PT, Miller KL et al (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Hampson M, Tokoglu F, Sun Z et al (2006) Connectivity-behavior analysis reveals that functional connectivity between left BA39 and Broca’s area varies with reading ability. Neuroimage 31:513–519CrossRefPubMedGoogle Scholar
  21. 21.
    Van den Heuvel MP, Mandl RCW, Kahn RS et al (2009) Functionally linked resting state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 30:3127–3141CrossRefPubMedGoogle Scholar
  22. 22.
    Rombouts SA, Barkhof F, Goekoop R et al (2005) Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum Brain Mapp 26:231–239CrossRefPubMedGoogle Scholar
  23. 23.
    Lowe MJ, Beall EB, Sakaie KE et al (2008) Resting state sensorimotor functional connectivity in multiple sclerosis inversely correlates with transcallosal motor pathway transverse diffusivity. Hum Brain Mapp 29:818–827CrossRefPubMedGoogle Scholar
  24. 24.
    Mohammadi B, Kollewe K, Samii A et al (2009) Changes of resting state brain networks in amyotrophic lateral sclerosis. Exp Neurol 217:147–153CrossRefPubMedGoogle Scholar
  25. 25.
    Liu Y, Liang M, Zhou Y et al (2008) Disrupted small-world networks in schizophrenia. Brain 131:945CrossRefPubMedGoogle Scholar
  26. 26.
    Seeley WW, Crawford RK, Zhou J et al (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62:42–52CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Baliki MN, Geha PY, Apkarian AV et al (2008) Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci 28:1398–1403CrossRefPubMedGoogle Scholar
  28. 28.
    Napadow V, LaCount L, Park K et al (2010) Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum 62:2545–2555CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Mainero C, Boshyan J, Hadjikhani N (2011) Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol 70:838–845CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Yu D, Yuan K, Zhao L et al (2012) Regional homogeneity abnormalities in patients with interictal migraine without aura: a resting-state study. NMR Biomed 2:806–812CrossRefGoogle Scholar
  31. 31.
    Xue T, Yuan K, Zhao L et al (2012) Intrinsic brain network abnormalities in migraines without aura revealed in resting-state fMRI. PLoS ONE 7:52927CrossRefGoogle Scholar
  32. 32.
    Xue T, Yuan K, Cheng P et al (2013) Alterations of regional spontaneous neuronal activity and corresponding brain circuit changes during resting state in migraine without aura. NMR Biomed 26:1051–1058CrossRefPubMedGoogle Scholar
  33. 33.
    Tessitore A, Russo A, Giordano A et al (2013) Disrupted default mode network connectivity in migraine without aura. J Headache Pain 14:89CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Chanraud S, Di Scala G, Dilharreguy B et al (2014) Brain functional connectivity and morphology changes in medication-overuse headache: clue for dependence-related processes? Cephalalgia 34:605–615CrossRefPubMedGoogle Scholar
  35. 35.
    Hougaard A, Amin FM, Magon S et al (2015) No abnormalities of intrinsic brain connectivity in the interictal phase of migraine with aura. Eur J Neurol. doi: 10.1111/ene.12636 (Epub ahead of print)PubMedGoogle Scholar
  36. 36.
    Messina R, Rocca MA, Colombo B et al (2015) Resting state functional connectivity abnormalities in pediatric patients with migraine. Presented as oral communication, American Academy of Neurology, Washington DC, 2015Google Scholar
  37. 37.
    Satterthwaite TD, Wolf DH, Loughead J et al (2012) Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. Neuroimage 60:623–632CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Satterthwaite TD, Elliott MA, Gerraty RT et al (2013) An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64:240–256CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2015

Authors and Affiliations

  • Bruno Colombo
    • 1
  • Maria Assunta Rocca
    • 2
  • Roberta Messina
    • 2
  • Simone Guerrieri
    • 1
  • Massimo Filippi
    • 2
  1. 1.Headache Research Unit, Department of Neurology, San Raffaele Scientific InstituteVita-Salute San Raffaele UniversityMilanItaly
  2. 2.Neuroimaging Research Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific InstituteVita-Salute San Raffaele UniversityMilanItaly

Personalised recommendations