Advertisement

Neurological Sciences

, Volume 36, Issue 3, pp 397–401 | Cite as

The effect of polymorphic metabolism enzymes on serum phenytoin level

  • Aydan Ozkaynakci
  • Medine Idrizoglu Gulcebi
  • Deniz Ergeç
  • Korkut Ulucan
  • Mustafa Uzan
  • Cigdem Ozkara
  • Ilter Guney
  • Filiz Yilmaz Onat
Original Article

Abstract

Phenytoin has a widespread use in epilepsy treatment and is mainly metabolized by hepatic cytochrome P450 enzymes (CYP). We have investigated CYP2C9*2, CYP2C9*3, CYP2C19*2 and CYP2C19*3 allelic variants in a Turkish population of patients on phenytoin therapy. Patients on phenytoin therapy (n = 102) for the prevention of epileptic seizures were included. Polymorphic alleles were analyzed by restriction fragment length polymorphism method. Serum concentrations of phenytoin were measured by fluorescence polarization immune assay method. The most frequent genotype was detected for CYP2C9 wild-type alleles (78.43 %), whereas CYP2C19*2/*2 (5.88 %) was the least frequent genotype group. According to the classification made with both enzyme polymorphisms, CYP2C9*1/*1-CYP2C19*1/*1 (G1: 41.17 %) genotype group was the most frequent whereas CYP2C9*1/*2-CYP2C19*1/*3 (G7: 0.98 %) was the least frequent one. The highest mean phenytoin level (27.95 ± 1.85 µg/ml) was detected in the G8 genotype group (CYP2C9*1/*3-CYP2C19*2/*3) and the G1 genotype group showed the lowest mean phenytoin level (7.43 ± 0.73 µg/ml). The mean serum concentration of phenytoin of the polymorphic patients with epilepsy was higher than that for the wild-type alleles both in the monotherapy and polytherapy patients. These results show the importance of the genetic polymorphism analysis of the main metabolizing enzyme groups of phenytoin for the dose adjustment.

Keywords

Epilepsy Phenytoin Pharmacogenomics Pharmacokinetics Pharmacotherapy Metabolism enzyme 

References

  1. 1.
    Ulrich K (2007) The role of pharmacogenetics in the metabolism of antiepileptic drugs pharmacokinetic and therapeutic implications. Clin Pharmocokinetic 46(4):271–279CrossRefGoogle Scholar
  2. 2.
    Perucca E (1996) The new generation antiepileptic drugs: advantages and disadvantages. Br J Clin Pharmacol 42(5):531–543CrossRefPubMedGoogle Scholar
  3. 3.
    Perucca E (2002) Patient-tailored antiepileptic drug therapy: predicting response to antiepileptic drugs. Int Congr Ser 1244:93–103CrossRefGoogle Scholar
  4. 4.
    McNamara JO (2001) Drug effective in the therapy of the epilepsies. In: Hardman JG, Limbırd LE, Gilman AG (eds) Goodman and Gilman’s the pharmacological basis of therapeutics, 10th edn. McGraw-Hill, USA, pp 521–545Google Scholar
  5. 5.
    Patsalos PN, Berry DJ, Bourgeois BFD, Cloyd JC, Glauser TA et al (2008) Antiepileptic drugs—best practice guidelines for therapeutic drug monitoring: a position paper by the subcommission on therapeutic drug monitoring, ILAE Commission on Therapeutic Strategies. Epilepsia 49:1239–1276CrossRefPubMedGoogle Scholar
  6. 6.
    Yamazaki H, Asahi S, Gillam EMJ, Guengerich FP, Nakajima M et al (2000) Formation of a dihydroxy metabolite of phenytoin by human liver microsomes 7 cytosol: roles of cytochrome P450 2C9, 2C19 and 3A4. Drug Metab Dispos 28:1361–1368PubMedGoogle Scholar
  7. 7.
    Miners JO, Birkett DJ (1998) Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 45:525–538PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Ninomiya H, Mamiya K, Matsuo S, Ieiri I, Higuchi S et al (2000) Genetic polymorphism of the CYP2C subfamily and excessive serum phenytoin concentration with central nervous system intoxication. Ther Drug Monit 22:230–232CrossRefPubMedGoogle Scholar
  9. 9.
    Mamiya K, Ieiri I, Shimamoto J, Yukawa E, Imaı J et al (1998) The effects of genetic polymorphisms of CYP2C9 and CYP2C19 on phenytoin metabolism in Japanese adult patients with epilepsy: studies in stereoselective hydroxylation and population pharmacokinetics. Epilepsia 39:1317–1323CrossRefPubMedGoogle Scholar
  10. 10.
    Gestaut H (1969) Classification of the epilepsies: Proposal for an international classification. Epilepsia 10:14–21Google Scholar
  11. 11.
    Hauser WA, Kurland LT (1975) The epidemiology of epilepsy in Rochester, Minnesota 1935 through 1967. Epilepsia 16:1–66CrossRefPubMedGoogle Scholar
  12. 12.
    Hung CC, Lin CJ, Chen CC, Chang CJ, Liou HH (2004) Dosage recommendation of phenytoin for patients with epilepsy with different CYP2C9/CYP2C19 polymorphisms. Ther Drug Monit 26(5):534–540CrossRefPubMedGoogle Scholar
  13. 13.
    Yukawa E, Mamiya K (2006) Effect of CYP2C19 genetic polymorphism on pharmacokinetics of phenytoin and phenobarbital in Japanese epileptic patients using non-linear mixed effects model approach. J Clin Pharm Ther 31(3):275–282CrossRefPubMedGoogle Scholar
  14. 14.
    Sanford JC, Guo Y, Sadee W, Wang D (2013) Regulatory polymorphisms in CYP2C19 affecting hepatic expression. Drug Metab Drug Interact 28(1):23–30CrossRefGoogle Scholar
  15. 15.
    Aynacıoğlu AŞ, Brockmöller J, Bauer S, Güzelbey P, Öngen Z et al (1999) Frequency of cytochrome P 450 CYP2C9 variants in Turkish population and functional relevance for phenytoin. Br J Clin Pharmacol 48:409–415PubMedGoogle Scholar
  16. 16.
    Imai J, Ieiri I, Mamiya K, Miyahara S, Furuumi H et al (2000) Polymorphism of the cytochrome P450(CYP)2C9 gene in Japanese epileptic patients: genetic analysis of the CYP2C9 locus. Pharmacogenetics 10:85–89CrossRefPubMedGoogle Scholar
  17. 17.
    Takanashi K, Tainaka H, Kobayashi K, Yasumori T, Hosakawa M et al (2000) CYP2C9 Ile359 and Leu359 variants: enzyme kinetic study with substrates. Pharmacogenetics 10:95–104CrossRefPubMedGoogle Scholar
  18. 18.
    Dickmann U, Rettie AE, Kneller MB, Kim RB, Wood AJ et al (2001) Identification and functional characterization of a new CYP2C9 variant (CYP2C9*5) expressed among African-Americans. Mol Pharmacol 60:382–387PubMedGoogle Scholar
  19. 19.
    Robert SK, Timothy B, Curry SG, Timi E, Joyse B et al (2001) Identification of null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin. Pharmacogenetics 11:803–808CrossRefGoogle Scholar
  20. 20.
    Weide J, Linda S, Steijns W, Marga JM, Keimpe H (2001) The effect of genetic polymorphism of cytocrom P450 CYP2C9 on phenytoin dose requirement. Pharmacogenetics 11:287–291CrossRefPubMedGoogle Scholar
  21. 21.
    Blaisdell J, Lucia F, Nebert J, Coulter S, Ferguson SS et al (2004) Discovery of new potentially defective alleles of human CYP2C9. Pharmacogenetics 14:527–537CrossRefPubMedGoogle Scholar
  22. 22.
    Basci NE, Bozkurt A, Kortunay S, Isimer A, Sayal A, Kayaalp SO (1993) Proguanil metabolism in relation to S- mephenytoin oxidation in a Turkish population. Br J Clin Pharmacol 42:771–773CrossRefGoogle Scholar
  23. 23.
    Odani A, Hashimoto Y, Otsuki Y, Uwaı Y, Hattori H et al (1997) Genetic polymorphism of the CYP2C subfamily and its effect on the pharmacokinetics of phenytoin in Japanese patients with epilepsy. Clin Pharmacol Ther 62(3):287–292CrossRefPubMedGoogle Scholar
  24. 24.
    Gaedigk A, Casley WL, Tyndale RF, Sellers EM, Jurima-Romet M et al (2001) Cytocrome P4502C9 (CYP2C9) allele frequencies in Canadian Native Indian and Inuit populations. Can J Physiol Pharmacol 79:841–847CrossRefPubMedGoogle Scholar
  25. 25.
    Ingelman M, Sundberg K (2004) Pharmacogenetics of cytocrome P450 and applications in drug therapy the past, present and future. TRENDS Pharmacol Sci 25(4)Google Scholar
  26. 26.
    Argikar UA, Cloyd JC, Birnbaum AK, Leppik IE, Conway J et al (2006) Paradoxical urinary phenytoin metabolite (S)/(R) ratios in CYP2C19 *1/*2. Epilepsy Res 71:54–63CrossRefPubMedGoogle Scholar
  27. 27.
    Yasumori T, Chen LS, Li QH, Ueda M, Tsuzukı Goldstein A et al (1999) Human CYP2C-mediated stereoselective phenytoin hydroxylation in Japanese: difference in chiral preference of CYP2C9 and CYP2C19. Biochem Pharmacol 57:1297–1303CrossRefPubMedGoogle Scholar
  28. 28.
    Kerb R, Aynacioglu AS, Brockmöller J, Schlagenhaufer R, Bauer S et al (2001) The predictive value of MDR1, CYP2C9, and CYP2C19 polymorphisms for phenytoin plasma levels. Pharmacogenomics J 1(3):204–210CrossRefPubMedGoogle Scholar
  29. 29.
    Scordo MG, Caputi AP, D’Arrigo C, Fava G, Spina E (2004) Allele and genotype frequencies of CYP2C9, CYP2C19 and CYP2D6 in an Italian population. Pharm Res 50:195–204CrossRefGoogle Scholar
  30. 30.
    Griskevicius L, Yasar Ü, Sandberg M, Hidestrand M, Eliasson E et al (2003) Bioactivation cyclophosphamide: the role of polymorphic CYP2C enzymes. Eur J Clin Pharmacol 59:103–109PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  • Aydan Ozkaynakci
    • 1
  • Medine Idrizoglu Gulcebi
    • 1
  • Deniz Ergeç
    • 2
  • Korkut Ulucan
    • 3
  • Mustafa Uzan
    • 4
  • Cigdem Ozkara
    • 5
  • Ilter Guney
    • 6
  • Filiz Yilmaz Onat
    • 1
  1. 1.Department of Pharmacology, School of MedicineUniversity of MarmaraIstanbulTurkey
  2. 2.Department of Molecular Biology and Genetics, Faculty of Art and ScienceUniversity of YüzyılIstanbulTurkey
  3. 3.Department of Molecular Biology and Genetics, Faculty of Engineering and Natural SciencesUniversity of ÜsküdarIstanbulTurkey
  4. 4.Department of Neurosurgery, Cerrahpaşa Medical FacultyIstanbul UniversityIstanbulTurkey
  5. 5.Department of Neurology, Cerrahpaşa Medical FacultyIstanbul UniversityIstanbulTurkey
  6. 6.Department of Medical Genetics, School of MedicineUniversity of MarmaraIstanbulTurkey

Personalised recommendations