Neurological Sciences

, Volume 36, Issue 3, pp 371–377 | Cite as

Grey matter damage in progressive multiple sclerosis versus amyotrophic lateral sclerosis: a voxel-based morphometry MRI study

  • Eleonora Tavazzi
  • Maria Marcella Laganà
  • Niels Bergsland
  • Paola Tortorella
  • Giovanna Pinardi
  • Christian Lunetta
  • Massimo Corbo
  • Marco Rovaris
Original Article

Abstract

Primary progressive multiple sclerosis (PPMS) and amyotrophic lateral sclerosis (ALS) seem to share some clinical and pathological features. MRI studies revealed the presence of grey matter (GM) atrophy in both diseases, but no comparative data are available. The objective was to compare the regional patterns of GM tissue loss in PPMS and ALS with voxel-based morphometry (VBM). Eighteen PPMS patients, 20 ALS patients, and 31 healthy controls (HC) were studied with a 1.5 Tesla scanner. VBM was performed to assess volumetric GM differences with age and sex as covariates. Threshold-free cluster enhancement analysis was used to obtain significant clusters. Group comparisons were tested with family-wise error correction for multiple comparisons (p < 0.05) except for HC versus MND which was tested at a level of p < 0.001 uncorrected and a cluster threshold of 20 contiguous voxels. Compared to HC, ALS patients showed GM tissue reduction in selected frontal and temporal areas, while PPMS patients showed a widespread bilateral GM volume decrease, involving both deep and cortical regions. Compared to ALS, PPMS patients showed tissue volume reductions in both deep and cortical GM areas. This preliminary study confirms that PPMS is characterized by a more diffuse cortical and subcortical GM atrophy than ALS and that, in the latter condition, brain damage is present outside the motor system. These results suggest that PPMS and ALS may share pathological features leading to GM tissue loss.

Keywords

Multiple sclerosis Amyotrophic lateral sclerosis Grey matter MRI Voxel-based morphometry 

References

  1. 1.
    Geurts JJ, Stys PK, Minagar A, Amor S, Zivadinov R (2009) Gray matter pathology in (chronic) MS: modern views on an early observation. J Neurol Sci 282(1–2):12–20CrossRefPubMedGoogle Scholar
  2. 2.
    Thompson A (2004) Overview of primary progressive multiple sclerosis (PPMS): similarities and differences from other forms of MS, diagnostic criteria, pros and cons of progressive diagnosis. Mult Scler 10(Suppl 1):S2–S7CrossRefPubMedGoogle Scholar
  3. 3.
    Brooks BR (1994) El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial “Clinical limits of amyotrophic lateral sclerosis” workshop contributors. J Neurol Sci 124(Suppl):96–107CrossRefPubMedGoogle Scholar
  4. 4.
    Agius LM (2012) Neuroinflammation as the proximate cause of signature pathogenic pattern progression in amyotrophic lateral sclerosis, AIDS, and multiple sclerosis. Patholog Res Int 2012:169270PubMedCentralPubMedGoogle Scholar
  5. 5.
    Hemminki K, Li X, Sundquist J, Sundquist K (2009) Familial risks for amyotrophic lateral sclerosis and autoimmune diseases. Neurogenetics 10(2):111–116CrossRefPubMedGoogle Scholar
  6. 6.
    Li G, Esiri MM, Ansorge O, DeLuca GC (2012) Concurrent multiple sclerosis and amyotrophic lateral sclerosis: where inflammation and neurodegeneration meet? J Neuroinflammation 9:20. doi:10.1186/1742-2094-9-20
  7. 7.
    Etemadifar M, Abtahi SH, Akbari M, Maghzi AH (2012) Multiple sclerosis and amyotrophic lateral sclerosis: is there a link? Mult Scler 18(6):902–904CrossRefPubMedGoogle Scholar
  8. 8.
    Landtblom AM, Riise T, Boiko A, Söderfeldt B (2002) Distribution of multiple sclerosis in Sweden based on mortality and disability compensation statistics. Neuroepidemiology 21(4):167–179CrossRefPubMedGoogle Scholar
  9. 9.
    Bostrom I, Riise T, Landtblom AM (2012) Mortality statistics for multiple sclerosis and amyotrophic lateral sclerosis in Sweden. Neuroepidemiology 38(4):245–249CrossRefPubMedGoogle Scholar
  10. 10.
    van Doormaal PT, Gallo A, van Rheenen W, Veldink JH, van Es MA, van den Berg LH (2013) Amyotrophic lateral sclerosis is not linked to multiple sclerosis in a population based study. J Neurol Neurosurg Psychiatry 84(8):940–941CrossRefPubMedGoogle Scholar
  11. 11.
    Confavreux C, Moreau T, Jouvet A, Tommasi M, Aimard G (1993) Association of amyotrophic lateral sclerosis and multiple sclerosis. Rev Neurol (Paris) 149(5):351–353Google Scholar
  12. 12.
    Hader WJ, Rpzdilsky B, Nair CP (1986) The concurrence of multiple sclerosis and amyotrophic lateral sclerosis. Can J Neurol Sci 13(1):66–69PubMedGoogle Scholar
  13. 13.
    Rajagopalan V, Allexandre D, Yue GH, Pioro EP (2011) Diffusion tensor imaging evaluation of corticospinal tract hyperintensity in upper motor neuron-predominant ALS patients. J Aging Res 2011:481745. doi:10.4061/2011/481745
  14. 14.
    Reich DS, Zackowski KM, Gordon-Lipkin EM, Smith SA, Chodkowski BA, Cutter GR et al (2008) Corticospinal tract abnormalities are associated with weakness in multiple sclerosis. AJNR Am J Neuroradiol 29(2):333–339PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Ceccarelli A, Rocca MA, Pagani E, Colombo B, Martinelli V, Comi G et al (2008) A voxel-based morphometry study of grey matter loss in MS patients with different clinical phenotypes. Neuroimage 42(1):315–322CrossRefPubMedGoogle Scholar
  16. 16.
    Verstraete E, Veldink JH, Hendrikse J, Schelhaas HJ, van den Heuvel MP, van den Berg LH (2012) Structural MRI reveals cortical thinning in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 83(4):383–388CrossRefPubMedGoogle Scholar
  17. 17.
    Grosskreutz J, Kaufmann J, Fradrich J, Dengler R, Heinze HJ, Peschel T (2006) Widespread sensorimotor and frontal cortical atrophy in Amyotrophic Lateral Sclerosis. BMC Neurol 25(6):17CrossRefGoogle Scholar
  18. 18.
    Agosta F, Pagani E, Rocca MA, Caputo D, Perini M, Salvi F et al (2007) Voxel-based morphometry study of brain volumetry and diffusivity in amyotrophic lateral sclerosis patients with mild disability. Hum Brain Mapp 28(12):1430–1438CrossRefPubMedGoogle Scholar
  19. 19.
    Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97CrossRefPubMedGoogle Scholar
  20. 20.
    McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50(1):121–127CrossRefPubMedGoogle Scholar
  21. 21.
    Battaglini M, Jenkinson M, De Stefano N (2012) Evaluating and reducing the impact of white matter lesions on brain volume measurements. Hum Brain Mapp 33(9):2062–2071CrossRefPubMedGoogle Scholar
  22. 22.
    Douaud G, Smith S, Jenkinson M, Behrens T, Johansen-Berg H, Vickers J et al (2007) Anatomically related grey and white matter abnormalities in adolescent-onset schizophrenia. Brain 130(Pt 9):2375–2386CrossRefPubMedGoogle Scholar
  23. 23.
    Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14(1 Pt 1):21–36CrossRefPubMedGoogle Scholar
  24. 24.
    Bodini B, Khaleeli Z, Cercignani M, Miller DH, Thompson AJ, Ciccarelli O (2009) Exploring the relationship between white matter and gray matter damage in early primary progressive multiple sclerosis: an in vivo study with TBSS and VBM. Hum Brain Mapp 30(9):2852–2861CrossRefPubMedGoogle Scholar
  25. 25.
    Sepulcre J, Sastre-Garriga J, Cercignani M, Ingle GT, Miller DH, Thompson AJ (2006) Regional gray matter atrophy in early primary progressive multiple sclerosis: a voxel-based morphometry study. Arch Neurol 63(8):1175–1180CrossRefPubMedGoogle Scholar
  26. 26.
    Bergsland N, Horakova D, Dwyer MG, Dolezal O, Seidl ZK, Vaneckova M et al (2012) Subcortical and cortical gray matter atrophy in a large sample of patients with clinically isolated syndrome and early relapsing-remitting multiple sclerosis. AJNR Am J Neuroradiol 33(8):1573–1578CrossRefPubMedGoogle Scholar
  27. 27.
    Fisniku LK, Chard DT, Jackson JS, Anderson VM, Altmann DR, Miszkiel KA et al (2008) Gray matter atrophy is related to long-term disability in multiple sclerosis. Ann Neurol 64(3):247–254CrossRefPubMedGoogle Scholar
  28. 28.
    Khaleeli Z, Cercignani M, Audoin B, Ciccarelli O, Miller DH, Thompson AJ (2007) Localized grey matter damage in early primary progressive multiple sclerosis contributes to disability. Neuroimage 37(1):253–261CrossRefPubMedGoogle Scholar
  29. 29.
    Minagar A, Barnett MH, Benedict RH, Pelletier D, Pirko I, Sahraian MA et al (2013) The thalamus and multiple sclerosis: modern views on pathologic, imaging, and clinical aspects. Neurology 80(2):210–219PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Cosottini M, Cecchi P, Piazza S, Pesaresi I, Fabbri S, Diciotti S et al (2013) Mapping cortical degeneration in ALS with magnetization transfer ratio and voxel-based morphometry. PLoS One 8(7):e68279PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Lillo P, Mioshi E, Burrell JR, Kiernan MC, Hodges JR, Hornberger M (2012) Grey and white matter changes across the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PLoS One 7(8):e43993PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Mioshi E, Lillo P, Yew B, Hsieh S, Savage S, Hodges JR et al (2013) Cortical atrophy in ALS is critically associated with neuropsychiatric and cognitive changes. Neurology 80(12):1117–1123CrossRefPubMedGoogle Scholar
  33. 33.
    Abrahams S, Goldstein LH, Suckling J, Ng V, Simmons A, Chitnis X et al (2005) Frontotemporal white matter changes in amyotrophic lateral sclerosis. J Neurol 252(3):321–331CrossRefPubMedGoogle Scholar
  34. 34.
    Filippini N, Douaud G, Mackay CE, Knight S, Talbot K, Turner MR (2010) Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis. Neurology 75(18):1645–1652PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2014

Authors and Affiliations

  • Eleonora Tavazzi
    • 1
  • Maria Marcella Laganà
    • 2
  • Niels Bergsland
    • 2
    • 3
    • 4
  • Paola Tortorella
    • 1
  • Giovanna Pinardi
    • 1
  • Christian Lunetta
    • 5
  • Massimo Corbo
    • 5
  • Marco Rovaris
    • 1
  1. 1.Unit of Motor Neurorehabilitation, Multiple Sclerosis CenterScientific Institute Santa Maria Nascente, Fondazione Don GnocchiMilanItaly
  2. 2.MR Research LaboratoryIRCCS Santa Maria Nascente, Fondazione Don GnocchiMilanItaly
  3. 3.Department of Electronics, Information and BioengineeringPolitecnico di MilanoMilanItaly
  4. 4.Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical SciencesUniversity at Buffalo, State University of New YorkBuffaloUSA
  5. 5.NEuroMuscular Omnicentre (NEMO)Niguarda HospitalMilanItaly

Personalised recommendations