Neurological Sciences

, Volume 34, Issue 6, pp 995–998 | Cite as

Tomm40 polymorphisms in Italian Alzheimer’s disease and frontotemporal dementia patients

  • Silvia Bagnoli
  • Irene Piaceri
  • Andrea Tedde
  • Valentina Bessi
  • Laura Bracco
  • Sandro Sorbi
  • Benedetta Nacmias
Brief Communication

Abstract

Chromosome 19 is one of the several prominent chromosomes related to the risk of developing late-onset Alzheimer’s disease (LOAD) and frontotemporal lobar degeneration (FTLD). However, only Apolipoprotein E (APOE) has been confirmed as a risk factor for both disorders. The aim of this study was to investigate a set of polymorphisms in the translocase of the outer mitochondrial membrane 40 (TOMM40) gene, located in close proximity to APOE, to clarify if the TOMM40 gene may be considered a risk factor for AD and FTLD, independently of APOE status. We performed a case–control study in a dataset of Italian LOAD and FTLD patients, analyzing the following three single-nucleotide polymorphisms (SNPs): rs157580, rs2075650 and rs157581. The analysis was made in 710 Italian subjects: 282 LOAD patients, 156 FTLD patients and 272 healthy subjects. Our results confirm the presence of an association between TOMM40 SNPs and LOAD in our Italian population, suggesting that genetic variations proximate to APOE contributes to the LOAD risk. Genotype and allele distribution of the TOMM40 polymorphisms between the FTLD group and controls did not show any statistical difference. When we analyzed haplotype distribution of the SNPs, taking into account the presence of the APOE allele, we observed a strong association between the ε4 allele and the GAC haplotype both in LOAD and FTLD patients. In contrast, this association did not hold for ε3/GAC. These results demonstrate that the TOMM40 gene does not have an APOE-independent role in the risk of developing LOAD and FTLD.

Keywords

Late-onset Alzheimer’s disease Frontotemporal lobar degeneration APOE TOMM40 

References

  1. 1.
    Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90:1977–1981PubMedCrossRefGoogle Scholar
  2. 2.
    Galimberti D, Scarpini E (2010) Genetics and biology of Alzheimer’s disease and frontotemporal lobar degeneration. Int J Clin Exp Med 3:129–143PubMedCrossRefGoogle Scholar
  3. 3.
    Seripa D, Bizzarro A, Pilotto A, Palmieri O, Panza F, D’Onofrio G, Gravina C, Archetti S, Daniele A, Borroni B, Padovani A, Masullo C (2012) TOMM40, APOE, and APOC1 in primary progressive aphasia and frontotemporal Dementia. J Alzheimers Dis 31:731–740PubMedGoogle Scholar
  4. 4.
    Abraham R, Moskvina V, Sims R, Hollingworth P, Morgan A, Georgieva L, Dowzell K, Cichon S, Hillmer AM, O’Donovan MC, Williams J, Owen MJ, Kirov G (2008) A genome-wide association study for late-onset Alzheimer’s disease using DNA pooling. BMC Med Genomics 29(1):44CrossRefGoogle Scholar
  5. 5.
    Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Hardy J, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Schürmann B, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frölich L, Hampel H, Hüll M, Rujescu D, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Mühleisen TW, Nöthen M, Moebus S, Jöckel KH, Klopp N, Wichmann HE, Carrasquillo MM, Pankratz VS, Younkin SG, Holmans PA, O’Donovan M, Owen MJ, Williams J (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093PubMedCrossRefGoogle Scholar
  6. 6.
    Swerdlow RH, Khan SM (2004) A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med Hypotheses 63:8–20PubMedCrossRefGoogle Scholar
  7. 7.
    David DC, Hauptmann S, Scherping I, Schuessel K, Keil U, Rizzu P, Ravid R, Dröse S, Brandt U, Müller WE, Eckert A, Götz J (2005) Proteomic and functional analyses reveal a mitochondrial dysfunction in P301L tau transgenic mice. J Biol Chem 280:23802–23814PubMedCrossRefGoogle Scholar
  8. 8.
    American Psychiatric Association (1994) Diagnostic and Statistical Manual of Mental Disorders. In: DSM-IV American Psychiatric Association, 4th edition. Washington, DC, USAGoogle Scholar
  9. 9.
    Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, Freedman M, Kertesz A, Robert PH, Albert M, Boone K, Miller BL, Cummings J, Benson DF (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554PubMedCrossRefGoogle Scholar
  10. 10.
    McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ, Work Group on Frontotemporal Dementia and Pick’s Disease (2001) Clinical and pathological diagnosis of frontotemporal dementia: Report of the Work Group on Frontotemporal Dementia and Pick’s Disease. Arch Neurol 58:1803–1809PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2013

Authors and Affiliations

  • Silvia Bagnoli
    • 1
  • Irene Piaceri
    • 1
  • Andrea Tedde
    • 1
  • Valentina Bessi
    • 1
  • Laura Bracco
    • 1
  • Sandro Sorbi
    • 1
  • Benedetta Nacmias
    • 1
  1. 1.Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA)University of FlorenceFlorenceItaly

Personalised recommendations