Neurological Sciences

, Volume 34, Issue 3, pp 281–286 | Cite as

Eye proprioception may provide real time eye position information

Review Article


Because of the frequency of eye movements, online knowledge of eye position is crucial for the accurate spatial perception and behavioral navigation. Both the internal monitoring signal (corollary discharge) of eye movements and the eye proprioception signal are thought to contribute to the localization of the eye position in the orbit. However, the functional role of these two eye position signals in spatial cognition has been disputed for more than a century. The predominant view proposes that the online analysis of eye position is exclusively provided by the corollary discharge signal, while the eye proprioception signal only plays a role in the long-term calibration of the oculomotor system. However, increasing evidence from recent behavioral and physiological studies suggests that the eye proprioception signal may play a role in the online monitoring of eye position. The purpose of this review is to discuss the feasibility and possible function of the eye proprioceptive signal for online monitoring of eye position.


Eye proprioception Corollary discharge Real time Eye position 



This study was supported by State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (SKLN-2010A05 and SKLN-201203). We thank Dr. Mingsha Zhang for his critical review and discussion, and Dr. Jane C. Yaciuk and Dr. Sara Steenrod for their language help.


  1. 1.
    Green DG (1970) Regional variations in the visual acuity for interference fringes on the retina. J Physiol 207:351–356PubMedGoogle Scholar
  2. 2.
    Andersen RA, Mountcastle VB (1983) The Influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J Neurosci 3:532–548PubMedGoogle Scholar
  3. 3.
    Andersen RA (1989) Visual and eye movement functions of the posterior parietal cortex. Annu Rev Neurosci 12:377–403PubMedCrossRefGoogle Scholar
  4. 4.
    Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 230:456–458PubMedCrossRefGoogle Scholar
  5. 5.
    Sherrington CS (1918) Observations on the sensual role of the proprioceptive nerve supply of the extrinsic ocular muscles. Brain 41:332–343CrossRefGoogle Scholar
  6. 6.
    Wurtz R (2008) Neuronal mechanisms of visual stability. Vision Res 48:2070–2089PubMedCrossRefGoogle Scholar
  7. 7.
    Sommer MA, Wurtz RH (2002) A pathway in primate brain for internal monitoring of movements. Science 296:1480–1482PubMedCrossRefGoogle Scholar
  8. 8.
    Sommer MA, Wurtz RH (2004) What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge. J Neurophysiol 91:1403–1423PubMedCrossRefGoogle Scholar
  9. 9.
    Bellebaum C, Daum I, Koch B, Schwarz M, Hoffmann KP (2005) The role of the human thalamus in processing corollary discharge. Brain 128:1139–1154PubMedCrossRefGoogle Scholar
  10. 10.
    Bellebaum C, Hoffmann KP, Koch B, Schwarz M, Daum I (2006) Altered processing of corollary discharge in thalamic lesion patients. Eur J Neurosci 24:2375–2388PubMedCrossRefGoogle Scholar
  11. 11.
    Ostendorf F, Liebermann D, Ploner CJ (2010) Human thalamus contributes to perceptual stability across eye movements. Proc Natl Acad Sci USA 107:1229–1234PubMedCrossRefGoogle Scholar
  12. 12.
    Lewis RF, Zee DS, Hayman MR, Tamargo RJ (2001) Oculomotor function in the rhesus monkey after deafferentation of the extraocular muscles. Exp Brain Res 141:349–358PubMedCrossRefGoogle Scholar
  13. 13.
    Lewis RF, Gaymard BM, Tamargo RJ (1998) Efference copy provides the eye position information required for visually guided reaching. J Neurophysiol 80:1605–1608PubMedGoogle Scholar
  14. 14.
    Ruskell G (1989) The fine structure of human extraocular muscle spindles and their potential proprioceptive capacity. J Anat 167:199–214PubMedGoogle Scholar
  15. 15.
    Billig I, Delmas CB, Buisseret P (1997) Identification of nerve endings in cat extraocular muscles. Anat Rec 248:566–575PubMedCrossRefGoogle Scholar
  16. 16.
    Fackelmann K, Nouriani A, Horn AK (2008) Histochemical characterisation of trigeminal neurons that innervate monkey extraocular muscles. Prog Brain Res 171:17–20PubMedCrossRefGoogle Scholar
  17. 17.
    Wang N, May PJ (2008) Peripheral muscle targets and central projections of the mesencephalic trigeminal nucleus in macaque monkeys. Anat Rec (Hoboken) 291:974–987CrossRefGoogle Scholar
  18. 18.
    Manni E, Bortolami R, Desole C (1966) Eye muscle proprioception and the semilunar ganglion. Exp Neurol 16:226–236PubMedCrossRefGoogle Scholar
  19. 19.
    Manni E, Bortolami R, Desole C (1968) Peripheral pathway of eye muscle proprioception. Exp Neurol 22:1–12PubMedCrossRefGoogle Scholar
  20. 20.
    Eberhorn AC, Horn AK, Eberhorn N, Fischer P, Boergen KP, Buttner-Ennever JA (2005) Palisade endings in extraocular eye muscles revealed by SNAP-25 immunoreactivity. J Anat 206:307–315PubMedCrossRefGoogle Scholar
  21. 21.
    Eberhorn AC, Horn AK, Fischer P, Buttner-Ennever JA (2005) Proprioception and palisade endings in extraocular eye muscles. Ann NY Acad Sci 1039:1–8PubMedCrossRefGoogle Scholar
  22. 22.
    Niechwiej-Szwedo E, González E, Bega S, Verrier MC, Wong AM, Steinbach MJ (2006) Proprioceptive role for palisade endings in extraocular muscles: evidence from the Jendrassik Maneuver. Vision Res 46:2268–2279PubMedCrossRefGoogle Scholar
  23. 23.
    Blumer R, Konakci KZ, Pomikal C, Wieczorek G, Lukas JR, Streicher J (2009) Palisade endings: cholinergic sensory organs or effector organs? Invest Ophthalmol Vis Sci 50:1176–1186PubMedCrossRefGoogle Scholar
  24. 24.
    Konakci KZ, Streicher J, Hoetzenecker W, Blumer MJF, Lukas JR, Blumer R (2005) Molecular characteristics suggest an effector function of palisade endings in extraocular muscles. Invest Ophth Vis Sci 46:155–165CrossRefGoogle Scholar
  25. 25.
    Tozer FM, Sherrington CS (1910) Receptors and afferents of the third, fourth, and sixth cranial nerves. Proc R Soc Lond Ser 82:451–457Google Scholar
  26. 26.
    Sas J, Die sogenannten RS (1952) ‘Palisaden-Endigungen’der Augenmuskeln. Acta Morph Acad Sci Hung 2:259–266Google Scholar
  27. 27.
    Lienbacher K, Mustari M, Ying HS, Buttner-Ennever JA, Horn AKE (2011) Do palisade endings in extraocular muscles arise from neurons in the motor nuclei? Invest Ophth Vis Sci 52:2510–2519CrossRefGoogle Scholar
  28. 28.
    Buttner-Ennever JA, Horn AKE, Scherberger H, D’Ascanio P (2001) Motoneurons of twitch and nontwitch extraocular muscle fibers in the abducens, trochlear, and oculomotor nuclei of monkeys. J Comp Neurol 438:318–335PubMedCrossRefGoogle Scholar
  29. 29.
    Zimmermann L, May PJ, Pastor ÁM, Streicher J, Blumer R (2011) Evidence that the extraocular motor nuclei innervate monkey palisade endings. Neurosci Lett 489:89–93PubMedCrossRefGoogle Scholar
  30. 30.
    Lukas JR, Blumer R, Denk M, Baumgartner I, Neuhuber W, Mayr R (2000) Innervated myotendinous cylinders in human extraocular muscles. Invest Ophth Vis Sci 41:2422–2431Google Scholar
  31. 31.
    Buttner-Ennever JA, Eberhorn A, Horn AK (2003) Motor and sensory innervation of extraocular eye muscles. Ann NY Acad Sci 1004:40–49PubMedCrossRefGoogle Scholar
  32. 32.
    Buttner-Ennever JA, Konakci KZ, Blumer R (2006) Sensory control of extraocular muscles. Prog Brain Res 151:81–93PubMedCrossRefGoogle Scholar
  33. 33.
    Wang X, Zhang M, Cohen IS, Goldberg ME (2007) The proprioceptive representation of eye position in monkey primary somatosensory cortex. Nat Neurosci 10:640–646PubMedCrossRefGoogle Scholar
  34. 34.
    Xu Y, Wang X, Peck C, Goldberg ME (2011) The time course of the tonic oculomotor proprioceptive signal in area 3a of somatosensory cortex. J Neurophysiol 106:71–77PubMedCrossRefGoogle Scholar
  35. 35.
    Balslev D, Miall RC (2008) Eye position representation in human anterior parietal cortex. J Neurosci 28:8968–8972PubMedCrossRefGoogle Scholar
  36. 36.
    Balslev D, Albert NB, Miall C (2011) Eye muscle proprioception is represented bilaterally in the sensorimotor cortex. Hum Brain Mapp 32:624–631PubMedCrossRefGoogle Scholar
  37. 37.
    Balslev D, Himmelbach M, Karnath HO, Svenja B, Odoj B (2012) Eye proprioception used for visual localization only if in conflict with the oculomotor plan. J Neurosci 32:8569–8573PubMedCrossRefGoogle Scholar
  38. 38.
    Ilg UJ, Bridgeman B, Hoffmann KP (1989) Influence of mechanical disturbance on oculomotor behavior. Vision Res 29:545–551PubMedCrossRefGoogle Scholar
  39. 39.
    Bridgeman B, Stark L (1991) Ocular proprioception and efference copy in registering visual direction. Vision Res 31:1903–1913PubMedCrossRefGoogle Scholar
  40. 40.
    Tong J, Stevenson SB, Bedell HE (2008) Signals of eye-muscle proprioception modulate perceived motion smear. J Vis 8(7):1–6CrossRefGoogle Scholar
  41. 41.
    Ziesche A, Hamker FH (2011) A computational model for the influence of corollary discharge and proprioception on the perisaccadic mislocalization of briefly presented stimuli in complete darkness. J Neurosci 31:17392–17405PubMedCrossRefGoogle Scholar
  42. 42.
    Weir RC, Knox PC, Dutton GN (2000) Does extraocular muscle proprioception influence ocular control. Br J Ophthalmol 84:1071–1074PubMedCrossRefGoogle Scholar
  43. 43.
    Allin F, Velay JL, Bouquerel A (1996) Shift in saccadic direction induced in humans by proprioceptive manipulation: a comparison between memory-guided and visually guided saccades. Exp Brain Res 110:473–481PubMedCrossRefGoogle Scholar
  44. 44.
    Matin L, Picoult E, Stevens JK, Edwards MW Jr, Young D, MacArthur R (1982) Oculoparalytic illusion: visual-field dependent spatial mislocalizations by humans partially paralyzed with curare. Science 216:198–201PubMedCrossRefGoogle Scholar
  45. 45.
    Knox PC, Weir CR, Murphy PJ (2000) Modification of visually guided saccades by a nonvisual afferent feedback signal. Invest Ophthalmol Vis Sci 41:2561–2565PubMedGoogle Scholar
  46. 46.
    Wei M, Lin N, Newlands SD (2011) Does orbital proprioception contribute to gaze stability during translation? Exp Brain Res 215:77–87PubMedCrossRefGoogle Scholar
  47. 47.
    Barash S, Bracewell RM, Fogassi L, Gnadt JW, Andersen RA (1991) Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a. J Neurophysiol 66:1095–1108PubMedGoogle Scholar
  48. 48.
    Hanes DP, Thompson KG, Schall JD (1995) Relationship of presaccadic activity in frontal eye field and supplementary eye field to saccade initiation in macaque: Poisson spike train analysis. Exp Brain Res 103:85–96PubMedCrossRefGoogle Scholar
  49. 49.
    Tanaka M (2007) Spatiotemporal properties of eye position signals in the primate central thalamus. Cereb Cortex 17:1504–1515PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of NeurologyThe First Clinical College, Harbin Medical UniversityHarbinChina

Personalised recommendations