Neurological Sciences

, Volume 34, Issue 2, pp 181–186 | Cite as

Cytoskeletal proteins in the cerebrospinal fluid as biomarker of multiple sclerosis

  • Roberto MadedduEmail author
  • Cristiano Farace
  • Paola Tolu
  • Giuliana Solinas
  • Yolande Asara
  • Maria Alessandra Sotgiu
  • Lucia Gemma Delogu
  • Jose Carlos Prados
  • Stefano Sotgiu
  • Andrea Montella
Original Article


The axonal cytoskeleton is a finely organized system, essential for maintaining the integrity of the axon. Axonal degeneration is implicated in the pathogenesis of unremitting disability of multiple sclerosis (MS). Purpose of this study is to evaluate levels of cytoskeletal proteins such as neurofilament light protein (NFL), glial fibrillary acidic protein (GFAP), and β-tubulin (β-Tub) isoforms II and III in the cerebrospinal fluid (CSF) of MS patients and their correlation with MS clinical indices. CSF levels of cytoskeletal proteins were determined in 51 patients: 33 with MS and 18 with other neurological diseases (OND). NFL, GFAP and β-Tub II proteins were significantly higher (p < 0.0001) in MS than in OND group; no significant difference (p > 0.05) was found between MS and OND with regard to β-Tub III. Interestingly, levels of β-Tub III and NFL were higher in progressive than in remitting MS forms; on the contrary, higher levels of β-Tub II and GFAP were found in remitting MS forms. However, with the exception of β-Tub III, all proteins tend to decrease their CSF levels concomitantly with the increasing disability (EDSS) score. Overall, our results might indicate β-Tub II as a potential candidate for diagnostic and β-Tub III as a possible prognostic biomarker of MS. Therefore, further analyses are legitimated and desirable.


Multiple sclerosis Biomarkers Cerebrospinal fluid Cytoskeletal proteins Axonal damage 


  1. 1.
    Noseworthy JH, Lucchinetti C, Rodriguez M et al (2000) Multiple sclerosis. N Engl J Med 343:938–952PubMedCrossRefGoogle Scholar
  2. 2.
    Alonso A, Hernán MA (2008) Temporal trends in the incidence of multiple sclerosis: a systematic review. Neurology 71:129–135PubMedCrossRefGoogle Scholar
  3. 3.
    Hirtz D, Thurman DJ, Gwinn-Hardy K et al (2007) How common are the “common” neurologic disorders? Neurology 68:326–337PubMedCrossRefGoogle Scholar
  4. 4.
    Orton SM, Herrera BN, Yee IM et al (2006) Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurol 5:932–936PubMedCrossRefGoogle Scholar
  5. 5.
    Greer JM, McCombe PA (2011) Role of gender in multiple sclerosis: clinical effects and potential molecular mechanisms. J Neuroimmunol 234:7–18PubMedCrossRefGoogle Scholar
  6. 6.
    Dyment DA, Ebers GC, Sadovnick AD (2004) Genetics of multiple sclerosis. Lancet Neurol 3(2):104–110PubMedCrossRefGoogle Scholar
  7. 7.
    Ebers GC (2008) Environmental factors and multiple sclerosis. Lancet Neurol 7(3):268–277PubMedCrossRefGoogle Scholar
  8. 8.
    Sotgiu S, Pugliatti M, Sanna A et al (2002) Multiple sclerosis complexity in selected populations: the challenge of Sardinia, insular Italy. Eur J Neurol 9:329–341PubMedCrossRefGoogle Scholar
  9. 9.
    Pugliatti M, Rosati G, Carton H et al (2006) The epidemiology of multiple sclerosis in Europe. Eur J Neurol 13:700–722PubMedCrossRefGoogle Scholar
  10. 10.
    Budde MD, Kim JH, Liang HF et al (2008) Axonal injury detected by in vivo diffusion tensor imaging correlates with neurological disability in a mouse model of multiple sclerosis. NMR Biomed 21:589–597PubMedCrossRefGoogle Scholar
  11. 11.
    Bitsch A, Schuchardt J, Bunkowski S et al (2000) Acute axonal injury in multiple sclerosis: correlation with demyelination and inflammation. Brain 123:1174–1183PubMedCrossRefGoogle Scholar
  12. 12.
    Rammohan KW (2003) Axonal injury in multiple sclerosis. Curr Neurol Neurosci Rep 3(3):231–237PubMedCrossRefGoogle Scholar
  13. 13.
    Teunissen CE, Dijkstra PC, Polman C (2005) Biological markers in CSF and blood for axonal degeneration in multiple sclerosis. Lancet Neurol 4:32–41PubMedCrossRefGoogle Scholar
  14. 14.
    Zaffaroni M (2003) Biological indicators of the neurodegenerative phase of multiple sclerosis. J Neurol Sci 24(Suppl 5):S279–S282Google Scholar
  15. 15.
    Lycke JN, Karlsson JE, Andersen O, Rosengren LE (1998) Neurofilament protein in cerebrospinal fluid: a potential marker of activity in multiple sclerosis. J Neurol Neurosurg Psychiatry 64(3):402–404PubMedCrossRefGoogle Scholar
  16. 16.
    Haghighi S, Andersen O, Odén A, Rosengren L (2004) Cerebrospinal fluid markers in MS patients and their healthy siblings. Acta Neurol Scand 109(2):97–99PubMedCrossRefGoogle Scholar
  17. 17.
    Malmeström C, Haghighi S, Rosengren L et al (2003) Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology 61(12):1720–1725PubMedCrossRefGoogle Scholar
  18. 18.
    Norgren N, Rosengren L, Stigbrand T (2003) Elevated neurofilament levels in neurological diseases. Brain Res 987(1):25–31PubMedCrossRefGoogle Scholar
  19. 19.
    Semra YK, Seidi OA, Sharief MK (2002) Heightened intrathecal release of axonal cytoskeletal proteins in multiple sclerosis is associated with progressive disease and clinical disability. J Neuroimmunol 122(1–2):132–139PubMedCrossRefGoogle Scholar
  20. 20.
    Rosengren LE, Lycke J, Andersen O (1995) Glial fibrillary acidic protein in CSF of multiple sclerosis patients: relation to neurological deficit. J Neurol Sci 133(1–2):61–65PubMedCrossRefGoogle Scholar
  21. 21.
    Petzold A, Eikelenboom MJ, Gveric D et al (2002) Markers for different glial cell responses in multiple sclerosis: clinical and pathological correlations. Brain 125(Pt 7):1462–1473PubMedCrossRefGoogle Scholar
  22. 22.
    Luduena RF (1998) Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 178:207–275PubMedCrossRefGoogle Scholar
  23. 23.
    Sullivan KF, Cleveland DW (1986) Identification of conserved isotype defining variable region sequences for four vertebrate β-tubulin polypeptide classes. Proc Natl Acad Sci USA 83:4327–4331PubMedCrossRefGoogle Scholar
  24. 24.
    Laferrière NB, MacRae TH, Brown DL (1997) Tubulin synthesis and assembly in differentiating neurons. Biochem Cell Biol 75(2):103–117PubMedCrossRefGoogle Scholar
  25. 25.
    Hoffman PN, Cleveland DW (1988) Neurofilament and tubulin expression recapitulates the developmental program during axonal regeneration: induction of a specific beta-tubulin isotype. Proc Natl Acad Sci USA 85(12):4530–4533PubMedCrossRefGoogle Scholar
  26. 26.
    Burgoyne RD, Cambray-Deakin MA, Lewis SA et al (1988) Differential distribution of beta-tubulin isotypes in cerebellum. EMBO J 7(8):2311–2319PubMedGoogle Scholar
  27. 27.
    Joshi HC, Cleveland DW (1989) Differential utilization of beta-tubulin isotypes in differentiating neurites. J Cell Biol 109(2):663–673PubMedCrossRefGoogle Scholar
  28. 28.
    Lee MK, Rebhun LI, Frankfurter A (1990) Post-translational modification of class III beta-tubulin. Proc Natl Acad Sci USA 87(18):7195–7199PubMedCrossRefGoogle Scholar
  29. 29.
    Moskowitz PF, Smith R, Pickett J et al (1993) Expression of the class III beta-tubulin gene during axonal regeneration of rat dorsal root ganglion neurons. J Neurosci Res 34(1):129–134PubMedCrossRefGoogle Scholar
  30. 30.
    McDonald WI, Compston A, Edan G et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127PubMedCrossRefGoogle Scholar
  31. 31.
    Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452PubMedCrossRefGoogle Scholar
  32. 32.
    Ziemann U, Wahl M, Hattingen E, Tumani H (2011) Development of biomarkers for multiple sclerosis as a neurodegenerative disorder. Prog Neurobiol. doi: 10.1016/j.pneurobio.2011.04.007 (in press)
  33. 33.
    Tumani H, Hartung HP, Hemmer B et al (2009) Cerebrospinal fluid biomarkers in multiple sclerosis. Neurobiol Dis 35(2):117–127PubMedCrossRefGoogle Scholar
  34. 34.
    Bielekova B, Martin R (2004) Development of biomarkers in multiple sclerosis. Brain 127:1463–1478PubMedCrossRefGoogle Scholar
  35. 35.
    Lucchinetti C, Brück W, Parisi J et al (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47(6):707–717PubMedCrossRefGoogle Scholar
  36. 36.
    Hein K, Kohler A, Diem R et al (2008) Biological marker for axonal degeneration in CSF and blood of patient with the first event indicative for multiple sclerosis. Neurosci Lett 436:72–76CrossRefGoogle Scholar
  37. 37.
    Bauer NG, Richter-Landsberg C et al (2009) Role of the oligodendroglial cytoskeleton in differentiation and myelination. Glia 57(16):1691–1705PubMedCrossRefGoogle Scholar
  38. 38.
    Salzer J, Svenningsson A, Sundstrom P (2010) Neurofilament light as a prognostic marker in multiple sclerosis. Mult Scler 16:287–292PubMedCrossRefGoogle Scholar
  39. 39.
    Norgren N, Sundström P, Svenningsson A et al (2004) Neurofilament and glial fibrillary acidic protein in multiple sclerosis. Neurology 63(9):1586–1590PubMedCrossRefGoogle Scholar
  40. 40.
    Axelsson M, Malmeström C, Nilsson S et al (2010) Glial fibrillary acidic protein: a potential biomarker for progression in multiple sclerosis. J Neurol 258(5):882–888CrossRefGoogle Scholar
  41. 41.
    Trapp BD, Bö L, Mörk S, Chang A (1999) Pathogenesis of tissue injury in MS lesions. J Neuroimmunol 98(1):49–56PubMedCrossRefGoogle Scholar
  42. 42.
    Gresle MM, Butzkueven H, Shaw G (2011) Neurofilament proteins as body fluid biomarkers of neurodegeneration in multiple sclerosis. Mult Scler Int 2011:315406. doi: 10.1155/2011/315406
  43. 43.
    Gunnarsson M, Malmestrom C, Axelsson M et al (2011) Axonal damage in relapsing multiple sclerosis is markedly reduced by natalizumab. Ann Neurol 69:83–89PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Roberto Madeddu
    • 1
    • 5
    Email author
  • Cristiano Farace
    • 1
  • Paola Tolu
    • 1
  • Giuliana Solinas
    • 1
  • Yolande Asara
    • 1
  • Maria Alessandra Sotgiu
    • 1
  • Lucia Gemma Delogu
    • 2
  • Jose Carlos Prados
    • 3
  • Stefano Sotgiu
    • 4
  • Andrea Montella
    • 1
  1. 1.Dipartimento di Scienze BiomedicheUniversità di SassariSassariItaly
  2. 2.Department of Drug SciencesUniversity of SassariSassariItaly
  3. 3.Department of Human Anatomy and EmbryologyUniversity of GranadaGranadaSpain
  4. 4.Section of Child Neuropsychiatry, Department of NeuroscienceUniversity of SassariSassariItaly
  5. 5.National Institute of Biostructures and Biosystems, INBBSassariItaly

Personalised recommendations